Journal of Mathematical Sciences

, Volume 243, Issue 4, pp 583–594 | Cite as

Explicit Equations for Exterior Square of the General Linear Group

  • R. A. LubkovEmail author
  • I. I. Nekrasov

Several explicit systems of equations defining the exterior square of the general linear group ⋀2 GLn as affine group scheme are presented. Algebraic ingredients of the equations, so called exterior numbers, are translated to the language of weight diagrams corresponding to a Lie group of type An−1 in the representation with the highest weight ϖ2.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. L. Gorodentsev, A. S. Khoroshkin, and A. N. Rudakov, On Syzygies of Highest Weight Orbits, Amer. Math. Soc., Providence, Rhode Island (2007).CrossRefGoogle Scholar
  2. 2.
    R. A. Lubkov and I. Nekrasov, “Overgroups of exterior powers of an elementary group. I. Levels and normalizers,” arXiv:1801.07918 [math.GR] (2018).Google Scholar
  3. 3.
    V. A. Petrov, “Overgroups of unitary groups,” K-Theory, 29, 77–108 (2003).MathSciNetCrossRefGoogle Scholar
  4. 4.
    E. B. Plotkin, A. A. Semenov, and N. A. Vavilov, “Visual basic representations,” J. Algebra Comput., 8, No. 1, 61–95 (1998).MathSciNetCrossRefGoogle Scholar
  5. 5.
    G. M. Seitz, “The maximal subgroups of classical algebraic groups,” Memoirs Amer. Math. Soc., 67, No. 365 (1987).MathSciNetCrossRefGoogle Scholar
  6. 6.
    A. V. Stepanov and N. A. Vavilov, “Decomposition of transvections,” K-Theory, 19, No. 2, 109–153 (2000).MathSciNetCrossRefGoogle Scholar
  7. 7.
    N. A. Vavilov and V. A. Petrov, “On overgroups of EO(2l,R),” Zap. Nauchn. Semin. POMI, 272, 68–85 (2000).Google Scholar
  8. 8.
    N. A. Vavilov and V. A. Petrov, “On overgroups of Ep(2l,R),” Algebra Analiz, 15, No. 3, 72–114 (2003).MathSciNetGoogle Scholar
  9. 9.
    N. A. Vavilov and V. A. Petrov, “On overgroups of EO(n,R),” Algebra Analiz, 19, No. 2, 10–51 (2007).MathSciNetGoogle Scholar
  10. 10.
    N. A. Vavilov and A. Yu. Luzgarev, “The normalizer of Chevalley groups of type E6,” Algebra Analiz, 19, No. 5, 37–64 (2007).Google Scholar
  11. 11.
    N. A. Vavilov and E. Ya. Perelman, “Polyvector representations of GLn,” Zap. Nauchn. Semin. POMI, 338, 69–97 (2006).Google Scholar
  12. 12.
    A. A. Suslin, “On the structure of the special linear group over polynomial rings,” Izv. Akad. Nauk SSSR, Ser. Mat.,41, No. 2, 235–252 (1977).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.The Chebyshev LaboratorySt.Petersburg State UniversitySt.PetersburgRussia

Personalised recommendations