Advertisement

Unrelativized Standard Commutator Formula

  • N. A. VavilovEmail author
Article
  • 1 Downloads

In the present note, which is a marginalia to the previous papers by Roozbeh Hazrat, Alexei Stepanov, Zuhong Zhang, and the author, I observe that for any ideals A,BR of a commutative ring R and all n ≥ 3 the birelative standard commutator formula also holds in the unrelativized form, as [E(n,A),GL(n,B)] = [E(n,A),E(n,B)] and discuss some obvious corollaries thereof.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Bass, “K-theory and stable algebra,” Inst. Hautes ´ Etudes Sci. Publ. Math., No. 22, 5–60 (1964).MathSciNetCrossRefGoogle Scholar
  2. 2.
    H. Bass, J. Milnor, and J.-P. Serre, “Solution of the congruence subgroup problem for SLn (n ≥ 3) and Sp2n (n ≥ 2),” Publ. Math. Inst. Hautes Études Sci., 33, 59–137 (1967).CrossRefGoogle Scholar
  3. 3.
    Z. I. Borewicz and N. A. Vavilov, “The distribution of subgroups in the full linear group over a commutative ring,” Proc. Steklov Inst. Math., 3, 27–46 (1985).Google Scholar
  4. 4.
    A. J. Hahn and O. T. O’Meara, The Classical Groups and K-theory. Springer, Berlin et al. (1989).CrossRefGoogle Scholar
  5. 5.
    R. Hazrat, A. Stepanov, N. Vavilov, and Z. Zhang, “The yoga of commutators,” J. Math. Sci., 179, No. 6, 662–678 (2011).MathSciNetCrossRefGoogle Scholar
  6. 6.
    R. Hazrat, A. Stepanov, N. Vavilov, and Z. Zhang, “Commutator width in Chevalley groups,” Note di Matematica, 33, No. 1, 139–170 (2013).MathSciNetzbMATHGoogle Scholar
  7. 7.
    R. Hazrat, A. Stepanov, N. Vavilov, and Z. Zhang, “The yoga of commutators, further applications,” J. Math. Sci., 200, No. 6, 742–768 (2014).MathSciNetCrossRefGoogle Scholar
  8. 8.
    R. Hazrat, N. Vavilov, and Z. Zhang, “Relative commutator calculus in unitary groups, and applications,” J. Algebra, 343, 107–137 (2011).MathSciNetCrossRefGoogle Scholar
  9. 9.
    R. Hazrat, N. Vavilov, and Z. Zhang, “Relative commutator calculus in Chevalley groups, and applications,” J. Algebra, 385, 262–293 (2013).MathSciNetCrossRefGoogle Scholar
  10. 10.
    R. Hazrat, N. Vavilov, and Z. Zhang, “Generation of relative commutator subgroups in Chevalley groups,” Proc. Edinburgh Math. Soc., 59, 393–410 (2016).MathSciNetCrossRefGoogle Scholar
  11. 11.
    R. Hazrat, N. Vavilov, and Z. Zhang, “The commutators of classical groups,” J. Math. Sci., 222, No. 4, 466–515 (2017).MathSciNetCrossRefGoogle Scholar
  12. 12.
    R. Hazrat and Z. Zhang, “Generalized commutator formula,” Commun. Algebra, 39, No. 4, 1441–1454 (2011).MathSciNetCrossRefGoogle Scholar
  13. 13.
    R. Hazrat and Z. Zhang, “Multiple commutator formula,” Israel J. Math., 195, 481–505 (2013).MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Leutbecher, “Euklidischer Algorithmus und die Gruppe GL2,” Math. Ann., 231, 269–285 (1978).MathSciNetCrossRefGoogle Scholar
  15. 15.
    B. Liehl, “On the group SL2 over orders of arithmetic type,” J. Reine Angew. Math., 323, 153–171 (1981).MathSciNetzbMATHGoogle Scholar
  16. 16.
    A. W. Mason, “On subgroups of GL(n,A) which are generated by commutators. II,” J. Reine Angew. Math., 322, 118–135 (1981).MathSciNetzbMATHGoogle Scholar
  17. 17.
    A. W. Mason and W. W. Stothers, “On subgroups of GL(n,A) which are generated by commutators,” Invent. Math., 23, 327–346 (1974).MathSciNetCrossRefGoogle Scholar
  18. 18.
    J. L. Mennicke, “Finite factor groups of the unimodular group,” Ann. Math., 81, 31–37 (1965).MathSciNetCrossRefGoogle Scholar
  19. 19.
    J. L. Mennicke, “A remark on the congruence subgroup problem,” Math. Scand., 86, No. 2, 206–222 (2000).MathSciNetCrossRefGoogle Scholar
  20. 20.
    B. Nica, “A true relative of Suslin’s normality theorem,” Enseign. Math., 61, Nos. 1–2, 151–159 (2015).MathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Stepanov, “Elementary calculus in Chevalley groups over rings,” J. Prime Res. Math., 9, 79–95 (2013).MathSciNetzbMATHGoogle Scholar
  22. 22.
    A. V. Stepanov, “Non-abelian K-theory for Chevalley groups over rings,” J. Math. Sci., 209, No. 4, 645–656 (2015).MathSciNetCrossRefGoogle Scholar
  23. 23.
    A. Stepanov, “Structure of Chevalley groups over rings via universal localization,” J. Algebra, 450, 522–548 (2016).MathSciNetCrossRefGoogle Scholar
  24. 24.
    A. Stepanov and N. Vavilov, “Decomposition of transvections: a theme with variations,” K-Theory, 19, No. 2, 109–153 (2000).MathSciNetCrossRefGoogle Scholar
  25. 25.
    A. A. Suslin, “The structure of the special linear group over polynomial rings,” Math. USSR Izv., 11, No. 2, 235–253 (1977).CrossRefGoogle Scholar
  26. 26.
    L. N. Vaserstein, “On the group SL2 over Dedekind rings of arithmetic type,” Mat. Sb., 89, No. 2, 313–322 (1972).MathSciNetGoogle Scholar
  27. 27.
    L. N. Vaserstein, “On the normal subgroups of the GLn of a ring,” in: Algebraic K-Theory, Evanston 1980, Springer, Berlin et al. (1981), pp. 454–465.Google Scholar
  28. 28.
    N. Vavilov, “Parabolic subgroups of the full linear group over a Dedekind ring of arithmetical type,” J. Sov. Math., 20, 2546–2555 (1982).CrossRefGoogle Scholar
  29. 29.
    N. Vavilov, “On the group SLn over a Dedekind domain of arithmetic type,” Vestn. Leningr. Univ., Mat. Mekh. Astron., No. 2, 5–10 (1983).Google Scholar
  30. 30.
    N. A. Vavilov and A. V. Stepanov, “Subgroups of the general linear group over rings that satisfy stability conditions,” Sov. Math., 33, No. 10, 23–31 (1989).zbMATHGoogle Scholar
  31. 31.
    N. A. Vavilov and A. V. Stepanov, “Standard commutator formula,” Vestn. St.Petersburg State Univ., Ser. 1, 41, No. 1, 5–8 (2008).MathSciNetCrossRefGoogle Scholar
  32. 32.
    N. A. Vavilov and A. V. Stepanov, “Standard commutator formulae, revisited,” Vestn. St.Petersburg State Univ., Ser. 1, 43, No. 1, 12–17 (2010).MathSciNetCrossRefGoogle Scholar
  33. 33.
    N. A. Vavilov and A. V. Stepanov, “Linear groups over general rings I. Generalities,” J. Math. Sci., 188, No. 5, 490–550 (2013).MathSciNetCrossRefGoogle Scholar
  34. 34.
    Hong You, “On subgroups of Chevalley groups which are generated by commutators,” J. Northeast Normal Univ., No. 2, 9–13 (1992).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.St.Petersburg State UniversitySt.PetersburgRussia

Personalised recommendations