Advertisement

Journal of Mathematical Sciences

, Volume 243, Issue 2, pp 230–239 | Cite as

Fundamental Solution of the Cauchy Problem for \( \left\{\overrightarrow{p},\overrightarrow{h}\right\} \)-Parabolic Systems with Variable Coefficients

  • V. A. LitovchenkoEmail author
Article
  • 4 Downloads

We define a class of parabolic systems of partial differential equations and substantiate their \( \left\{\overrightarrow{p},\overrightarrow{h}\right\} \) -parabolicity. We study the properties of the spatial behavior of fundamental solutions of the Cauchy problem for \( \left\{\overrightarrow{p},\overrightarrow{h}\right\} \) -parabolic systems with time-dependent coefficients and present examples of these systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. E. Shilov, “On the conditions of well-posedness of the Cauchy problem for systems of partial differential equations with constant coefficients,” Usp. Mat. Nauk,10, No. 4, 89–100 (1955).Google Scholar
  2. 2.
    I. G. Petrowsky, “Über das Cauchyche Problem für Systeme von partiellen Differentialgleichungen,” Mat. Sb.,2, No. 5, 815–870 (1937).zbMATHGoogle Scholar
  3. 3.
    I. M. Gel’fand and G. E. Shilov, Some Problems of the Theory of Differential Equations [in Russian], Fizmatgiz, Moscow (1958).Google Scholar
  4. 4.
    V. A. Litovchenko, “Cauchy problem for \( \left\{\overrightarrow{p},\overrightarrow{h}\right\} \) -parabolic equations with time-dependent coefficients,” Mat. Zametki,77, No. 3-4, 364–379 (2005).Google Scholar
  5. 5.
    Ya. I. Zhitomirskii, “Cauchy problem for some types of Shilov parabolic systems of linear partial differential equations with variable coefficients,” Izv. Akad. Nauk SSSR, Ser. Mat.,23, 925–932 (1959).Google Scholar
  6. 6.
    S. D. Éidel’man, S. D. Ivasishen, and F. O. Porper, “Liouville theorems for Shilov parabolic systems,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 6, 169–179 (1961).Google Scholar
  7. 7.
    V. V. Gorodetskii, “Some stabilization theorems for solutions of the Cauchy problem for Shilov-parabolic systems in classes of generalized functions,” Ukr. Mat. Zh.,40, No. 1, 43–48 (1988); English translation:Ukr. Math. J.,40, No. 1, 35–40 (1988).Google Scholar
  8. 8.
    V. A. Litovchenko. “Cauchy problem for equations parabolic in Shilov’s sense,” Sib. Mat. Zh.,45, No. 4, 809–821 (2004).CrossRefGoogle Scholar
  9. 9.
    V. A. Litovchenko and I. M. Dovzhytska, “The fundamental matrix of solutions of the Cauchy problem for a class of parabolic systems of the Shilov type with variable coefficients,” J. Math. Sci.,175, No. 4, 450–476 (2011).MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. D. Ivasyshen and V. A. Litovchenko, “Cauchy problem for one class of degenerate parabolic equations of Kolmogorov type with positive genus,” Ukr. Mat. Zh.,61, No. 8, 1066–1087 (2009); English translation:Ukr. Math. J.,61, No. 8, 1264–1288 (2009).Google Scholar
  11. 11.
    S. D. Ivasyshen and V. A. Litovchenko, “Cauchy problem for a class of degenerate Kolmogorov-type parabolic equations with nonpositive genus,” Ukr. Mat. Zh.,62, No. 10, 1330–1350 (2010); English translation:Ukr. Math. J., Ukr. Mat. Zh.,62, No. 10, 1543–1566 (2011).Google Scholar
  12. 12.
    F. R. Gantmakher, Theory of Matrices [in Russian], Nauka, Moscow (1988).zbMATHGoogle Scholar
  13. 13.
    I. M. Gel’fand and G. E. Shilov, Spaces of Test and Generalized Functions [in Russian], Fizmatgiz, Moscow (1958).Google Scholar
  14. 14.
    S. D. Éidel’man, Parabolic Systems [in Russian], Nauka, Moscow (1964).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fed’kovych Chernivtsi National UniversityChernivtsiUkraine

Personalised recommendations