Advertisement

Journal of Mathematical Sciences

, Volume 243, Issue 1, pp 145–161 | Cite as

Problem of Thermoelasticity for a Cylinder with Thin Multilayer Coating

  • V. A. Shevchuk
Article
  • 3 Downloads

On the basis of the obtained analytic solution of the one-dimensional problem of thermoelasticity for a cylinder with multilayer coating under the conditions of convective heat exchange with the environment, we study the thermal stressed state of the system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. M. Bartenev and A. I. Zhornik, “Temperature stresses in glass coatings on metal pipes,” Fiz. Khim. Obrab. Mat., No. 3, 100–108 (1972).Google Scholar
  2. 2.
    V. M. Vigak and A. M. Rigin, “Temperature stresses in a multilayer piecewise homogeneous cylinder,” Mat. Met. Fiz.-Mekh. Polya, Issue 15, 63–67 (1982).Google Scholar
  3. 3.
    V. M. Vigak, “Solutions of one-dimensional problems of elasticity and thermoelasticity for cylindrical piecewise-homogeneous bodies,” Mat. Met. Fiz.-Mekh. Polya, 40, No. 4, 139–148 (1997); English translation:J. Math. Sci., 96, No. 2, 3057–3064 (1999);  https://doi.org/10.1007/BF02169706.CrossRefGoogle Scholar
  4. 4.
    V. A. Kudinov, A. V. Eremin, and E. V. Kotova, “Construction of exact analytic solutions of the problems of thermoelasticity for multilayer cylindrical structures,” Vest. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauk., No. 2(27), 188–191 (2012).Google Scholar
  5. 5.
    V. A. Kudinov, A. V. Eremin, A. E. Kuznetsova, and E. V. Stefanyuk, “Thermal stresses in a multilayer hollow cylinder under thermal shock on its external surface,” Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh., No. 1, 30–35 (2014); English translation:Russ. Aeront., 57, No. 1, 37–44 (2014);  https://doi.org/10.3103/S1068799814010061.CrossRefGoogle Scholar
  6. 6.
    O. G. Kutsenko, O. M. Kharytonov, and G. M. Zrazhens’kyi, “Analytic solution of a nonstationary problem of thermoelasticity corresponding to the thermal shock of a two-layer cylinder,” Visn. Kyiv. Nats. Univ. im. T. Shevchenka, Ser. Fiz.-Mat. Nauk., Issue 2, 65–70 (2009).Google Scholar
  7. 7.
    R. M. Kushnir, B. V. Protsyuk, and V. M. Synyuta, “Quasistatic temperature stresses in a multilayer thermally sensitive cylinder,” Fiz.-Khim. Mekh. Mater., 40, No. 4, 7–16 (2004); English translation:Mater. Sci., 40, No. 4, 433–445 (2004);  https://doi.org/10.1007/s11003-005-0061-6.CrossRefGoogle Scholar
  8. 8.
    Ya. S. Podstrigach and P. R. Shevchuk, “Temperature fields and stresses in bodies with thin coatings,” Tepl. Napryazh. Élem. Konstr., Issue 7, 227–233 (1967).Google Scholar
  9. 9.
    Ya. S. Podstrigach, P. R. Shevchuk, and D. V. Ivashchuk, “Stressed state of the material in diffusion saturation of a cylinder with a thin coating,” Probl. Prochn., No. 7, 3–8 (1974); English translation:Strength Mater., 6, No. 7, 787–792 (1974);  https://doi.org/10.1007/BF01528315.CrossRefGoogle Scholar
  10. 10.
    V. S. Popovych, H. Yu. Harmatii, and K. S. Ivankiv, “Nonstationary problem of heat conduction for a thermosensitive cylinder with coating,” Visn. L’viv. Univ., Ser. Mekh.-Mat., Issue 46, 83–88 (1997).Google Scholar
  11. 11.
    V. S. Popovych, K. S. Ivankiv, and H. Yu. Harmatii, “Axisymmetric quasistatic problem of thermoelasticity for a thermosensitive cylinder with thin coating,” Visn. L’viv. Univ., Ser. Mekh.-Mat., Issue 46, 89–96 (1997).Google Scholar
  12. 12.
    V. S. Popovych and B. M. Kalynyak, “Mathematical modeling and methods for the determination of the static thermoelastic state of multilayer thermally sensitive cylinders,” Mat. Met. Fiz.-Mekh. Polya, 57, No. 2, 169–186 (2014); English translation:J. Math. Sci., 215, No. 2, 218–242 (2016);  https://doi.org/10.1007/s10958-016-2833-y.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Yu. A. Prokopenko, “Mathematical simulation of thermally loaded two-layer cylinders,” Vest. Tambov. Gos. Tekh. Univ., 15, No. 4, 806–813 (2009).Google Scholar
  14. 14.
    B. V. Protsyuk, “Determination of the thermal stressed state of a piecewise inhomogeneous thermosensitive hollow cylinder,” Prykl. Probl. Mekh. Mat., Issue 13, 101–110 (2015).Google Scholar
  15. 15.
    S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill, New York (1970).zbMATHGoogle Scholar
  16. 16.
    M. Shvorak, “Analytic solution of a nonstationary problem of thermoelasticity for a two-layer cylinder,” Visn. Kyiv. Nats. Univ. im. T. Shevchenka, Ser. Fiz.-Mat. Nauk., Issue 26, 51–55 (2011).Google Scholar
  17. 17.
    V. A. Shevchuk, “Determination of residual stresses in a cylinder with thin multilayer coating,” Prykl. Probl. Mekh. Mat., Issue 10, 159–167 (2012).Google Scholar
  18. 18.
    V. A. Shevchuk, “Nonstationary one-dimensional problem of heat conduction for a cylinder with a thin multilayer coating,” Mat. Met. Fiz.-Mekh. Polya, 54, No. 2, 179–185 (2011); English translation:J. Math. Sci., 184, No. 2, 215–223 (2012);  https://doi.org/10.1007/s10958-012-0865-5.CrossRefGoogle Scholar
  19. 19.
    V. A. Shevchuk, “Numerical analysis of thermal stresses in bodies with thin multilayer coatings,” Visn. Dnipropetr. Univ., Ser. Mekh., 19, Issue 15(1), 129–139 (2011).Google Scholar
  20. 20.
    V. A. Shevchuk and B. M. Kalynyak, “Stressed state of cylindrical bodies with multilayer inhomogeneous coatings,” Fiz.-Khim. Mekh. Mater., 46, No. 6, 35–41 (2010); English translation:Mater. Sci., 46, No. 6, 747–756 (2011);  https://doi.org/10.1007/s11003-011-9348-y.CrossRefGoogle Scholar
  21. 21.
    O. I. Yatskiv, R. M. Shvets’, and B. Ya. Bobyk, “Some approaches to the solution of the problem of heating of a solid elastic cylinder with nonstationary boundary conditions,” Prykl. Probl. Mekh. Mat., Issue 5, 186–194 (2007).Google Scholar
  22. 22.
    A. Carpinteri and E. Lorenzini, “Thermal shock in a nuclear fuel element with cladding,” Nucl. Eng. Design., 61, No. 1, 1–12 (1980);  https://doi.org/10.1016/0029-5493(80)90073-4.CrossRefGoogle Scholar
  23. 23.
    M. Ciavarella, P. Decuzzi, V. L. Tagarielli, and G. P. Demelio, “Simple formulas for thermoelastic stresses in TBC coatings,” J. Therm. Stresses,26, No. 5, 409–422 (2003);  https://doi.org/10.1080/713855940.CrossRefGoogle Scholar
  24. 24.
    B. Kalynyak and V. Popovych, “Thermal stresses in multilayer thermal sensitive cylinder at asymptotic thermal conditions,” in: F. Ziegler, R. Heuer, and C. Adam (Eds.), Proc. of the Sixth Internat. Congr. on Thermal Stresses (May 26–29, 2005, Vienna, Austria), Vienna Univ. of Technology, Vienna (2005), Vol. 2, pp. 119–122.Google Scholar
  25. 25.
    F. Kroupa, “Stresses in coatings on cylindrical surfaces,” Acta Tech. CSAV, 39, 243–274 (1994).Google Scholar
  26. 26.
    Z.-Y. Lee, C. K. Chen, and C.-I. Hung, “Transient thermal stress analysis of multilayered hollow cylinder,” Acta Mechanica, 151, Nos. 1-2, 75–88 (2001);  https://doi.org/10.1007/BF01272526.CrossRefGoogle Scholar
  27. 27.
    X. Men, F. Tao, and L. Gan, “Analysis of the coating interfacial stress in thick walled cylinder,” in: W. Du and X. Zhou (Eds.), Proc. of the Third Internat. Conf. on Machinery, Materials, and Information Technology Applications (ICMMITA), Atlantis Press, Paris (2015), pp. 1355–1358; doi: https://doi.org/10.2991/icmmita-15.2015.251.CrossRefGoogle Scholar
  28. 28.
    H. F. Nied, “Thermal shock in a circumferentially cracked hollow cylinder with cladding,” Eng. Fract. Mech., 20, No. 1, 113–137 (1984);  https://doi.org/10.1016/0013-7944(84)90120-6.CrossRefGoogle Scholar
  29. 29.
    S. Q. Nusier and G. M. Newaz, “Transient residual stresses in thermal barrier coatings: analytical and numerical results,” Trans. ASME. J. Appl. Mech., 65, No. 2, 346–353 (1998); doi: https://doi.org/10.1115/1.2789061.CrossRefGoogle Scholar
  30. 30.
    Y. Ootao, Y. Tanigawa, and T. Fukuda, “Axisymmetric transient thermal stress analysis of a multilayered composite hollow cylinder,” J. Therm. Stresses, 14, No. 2, 201–213 (1991);  https://doi.org/10.1080/01495739108927062.CrossRefGoogle Scholar
  31. 31.
    V. A. Shevchuk, “Generalized boundary conditions to solving thermal stress problems for bodies with thin coatings,” in: R. B. Hetnarski (Ed.), Encyclopedia of Thermal Stresses, Springer, Dordrecht (2014), Vol. 4, pp. 1942–1953.CrossRefGoogle Scholar
  32. 32.
    V. A. Shevchuk, “Modeling and computation of heat transfer in a system “body-multilayer coating”,” Heat Transfer Res., 37, No. 5, 421–433 (2006); doi: https://doi.org/10.1615/HeatTransRes.v37.i5.50.CrossRefGoogle Scholar
  33. 33.
    H. A. Sollund, K. Vedeld, and J. Hellesland,“Efficient analytical solutions for heated and pressurized multilayer cylinders” Ocean Eng., 92, 285–295 (2014); doi: https://doi.org/10.1016/j.oceaneng.2014.10.003.CrossRefGoogle Scholar
  34. 34.
    K. Vedeld, H. A. Sollund, and J. Hellesland, “Closed analytical expressions for stress distributions in two-layer cylinders and their application to offshore lined and clad pipes,” Trans. ASME J. Offshore Mech. Arct. Eng., 137, No. 2, 021702.1-9 (2015); doi: https://doi.org/10.1115/1.4029357.CrossRefGoogle Scholar
  35. 35.
    Q. Zhang, Z. W. Wang, C. Y. Tang, D. P. Hu, P. Q. Liu, and L. Z. Xia, “Analytical solution of the thermo-mechanical stresses in a multilayered composite pressure vessel considering the influence of the closed ends,” Int. J. Pres. Ves. Pip., 98, 102–110 (2012);  https://doi.org/10.1016/j.ijpvp.2012.07.009.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. A. Shevchuk
    • 1
  1. 1.Pidstryhach Institute for Applied Problems in Mechanics and MathematicsUkrainian National Academy of SciencesLvivUkraine

Personalised recommendations