Journal of Mathematical Sciences

, Volume 243, Issue 1, pp 85–100 | Cite as

Coupled Problems of Contact Interaction

  • V. I. Kuz’menko
  • S. O. Plashenko

We pose and study a class of contact problems on the inverse influence of deformation on the action of forces applied to a die. The problems are formulated in the form of an operator equation for displacements and rotations of the die. The analytic solutions for two- and three-dimensional coupled problems are obtained in the case where the die suffers the action of gravitational and magnetic fields.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. R. Hachkevych and R. M. Kushnir, “Selected problems of the mechanics of coupled fields,” Mat. Met. Fiz.-Mekh. Polya, 59, No. 1, 7–24 (2016); English translation:J. Math. Sci., 229, No. 2, 115–132 (2018).Google Scholar
  2. 2.
    O. P. Kozachok, B. S. Slobodyan, and R. M. Martynyak, “Contact of elastic bodies in the presence of gas and incompressible liquid in periodic interface gaps,” Fiz.-Khim. Mekh. Mater., 51, No. 6, 50–57 (2015); English translation:Mater. Sci., 51, No. 6, 804–813 (2016).CrossRefGoogle Scholar
  3. 3.
    A. I. Lurie, Theory of Elasticity, Springer, Berlin (2005).Google Scholar
  4. 4.
    V. G. Rekach, A Guide to the Solution of Problems of the Elasticity Theory [in Russian], Vysshaya Shkola, Moscow (1977).Google Scholar
  5. 5.
    K. A. Chumak, N. I. Malanchuk, and R. M. Martynyak, “Partial slip contact problem for solids with regular surface texture assuming thermal insulation or thermal permeability of interface gaps,” Int. J. Mech. Sci., 84, 138–146 (2014).CrossRefGoogle Scholar
  6. 6.
    S. L. Lee and C. R. Ou, “Gap formation and interfacial heat transfer between thermoelastic bodies in imperfect contact,” Trans. ASME. J. Heat Transfer, 123, No. 2, 205–212 (2001).CrossRefGoogle Scholar
  7. 7.
    M. A. Ezzat, “Electromagneto coupled and generalized thermoelasticity,” in: R. B. Hetnarski (Ed.), Encyclopedia of Thermal Stresses, Springer, Dordrecht (2014), Vol. 3, pp. 1214–1222.CrossRefGoogle Scholar
  8. 8.
    K. Shumelchyk and V. Kuzmenko, “Coupled problems of interaction of deformable bodies and liquid of high pressure,” Mech. Control, 32, No. 4, 136–142 (2013).CrossRefGoogle Scholar
  9. 9.
    A. Yevtushenko and M. Kuciej, “One-dimensional analytical models of frictional heating during braking,” in: R. B. Hetnarski (Ed.), Encyclopedia of Thermal Stresses, Springer, Dordrecht (2014), Vol. 7, pp. 3445–3452.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. I. Kuz’menko
    • 1
  • S. O. Plashenko
    • 1
  1. 1.Honchar Dnipro National UniversityDniproUkraine

Personalised recommendations