Journal of Mathematical Sciences

, Volume 243, Issue 1, pp 73–84 | Cite as

Resonance Vibration and Dissipative Heating of a Flexible Viscoelastic Beam with Piezoactuators in the Presence of Shear Strains

  • I. F. Kyrychok
  • Ya. O. Zhuk
  • T. V. Karnaukhova

We consider a problem of forced resonance vibration and dissipative heating of a hinged flexible viscoelastic beam with piezoactuators in the presence of transverse shear strains. The effects of geometric nonlinearities, in-plane shear strains, and the conditions of heat exchange on the surfaces on the amplitude and temperature-frequency characteristics of the forced vibration of the beam and the thermal failure of the system are investigated. The possibility of active damping of the mode of flexural vibrations by piezoactuators is analyzed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ya. M. Grigorenko and A. T. Vasilenko, Theory of Shells with Variable Stiffness, in: A. N. Guz’ (editor), Methods for the Numerical Analyses of Shells [in Russian], Vol. 4, Naukova Dumka, Kiev (1981).Google Scholar
  2. 2.
    Ya. A. Zhuk and I. K. Senchenkov, “Modelling the stationary vibrations and dissipative heating of thin-walled inelastic elements with piezoactive layers,” Prikl. Mekh.,40, No. 5, 80–91 (2004); English translation: Int. Appl. Mech.,40, No. 5, 546–556 (2004).CrossRefGoogle Scholar
  3. 3.
    A. A. Il’yushin and B. E. Pobedrya, Foundations of the Mathematical Theory of Thermoviscoelasticity [in Russian], Nauka, Moscow (1970).Google Scholar
  4. 4.
    V. G. Karnaukhov and V. V. Mikhailenko, Nonlinear Thermomechanics of Piezoelectric Inelastic Bodies under Monoharmonic Loading [in Russian], Zhytomyr State Technol. Univ., Zhytomyr (2005).Google Scholar
  5. 5.
    V. G. Karnaukhov and І. F. Kirichok, Coupled Problems in the Theory of Viscoelastic Plates and Shells [in Russian], Naukova Dumka, Kiev (1986).zbMATHGoogle Scholar
  6. 6.
    V. G. Karnaukhov, І. F. Kyrychok, and V. I. Kozlov, “Thermomechanics of inelastic thin-walled structural members with piezoelectric sensors and actuators under harmonic loading (review),” Prikl. Mekh.,53, No. 1, 9–74 (2017); English translation: Int. Appl. Mech.,53, No. 1, 6–58 (2017).MathSciNetCrossRefGoogle Scholar
  7. 7.
    І. F. Kyrychok, І. K. Senchenkov, and O. P. Chervinko, “Forced vibrations and vibration heating of viscoelastic beams with piezoelectric sensors and actuators,” Mat. Met. Fiz.-Mekh. Polya,57, No. 2, 112–124 (2014); English translation: J. Math. Sci.,215, No. 2, 143–158 (2016).MathSciNetCrossRefGoogle Scholar
  8. 8.
    H. Djojodihardjo, M. Jafari, S. Wiriadidjaja, and K. A. Ahmad, “Active vibration suppression of an elastic piezoelectric sensor and actuator fitted cantilevered beam configurations as a generic smart composite structure,” Compos. Struct.,132, 848–863 (2015).CrossRefGoogle Scholar
  9. 9.
    U. Gabbert and H. S. Tzou, Smart Structures and Structronic Systems, Kluwer AP, Dordrecht (2001).CrossRefGoogle Scholar
  10. 10.
    I. A. Guz, Y. A. Zhuk, and M. Kashtalyan, “Dissipative heating and thermal fatigue life prediction for structures containing piezoactive layers,” Tech. Mechanik,32, Nos. 2-5, 238–250 (2012).Google Scholar
  11. 11.
    S. S. Rao and M. Sunar, “Piezoelectricity and its use in disturbance sensing and control of structure: A survey,” Appl. Mech. Rev.,47, No. 44, 113–123 (1994).CrossRefGoogle Scholar
  12. 12.
    B. A. Selim, L. W. Zhang, and K. M. Liew, “Active vibration control of CNT-reinforced composite plates with piezoelectric layers based on Reddy’s higher-order shear deformation theory,” Compos. Struct.,163, 350–364 (2017).CrossRefGoogle Scholar
  13. 13.
    Y. A. Zhuk and I. A. Guz, “Dissipative heating of thin-wall structures containing piezoactive layers,” in: R. B. Hetnarski (editor), Encyclopedia of Thermal Stresses, Springer, Dordrecht (2014), Vol. 2, pp. 971–985.CrossRefGoogle Scholar
  14. 14.
    Y. A. Zhuk, I. A. Guz, C. M. Sands, “Analysis of the vibrationally induced dissipative heating of thin-wall structures containing piezoactive layers,” Int. J. Non-Linear Mech.,47, No. 2, 105–116 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • I. F. Kyrychok
    • 1
  • Ya. O. Zhuk
    • 2
  • T. V. Karnaukhova
    • 3
  1. 1.Timoshenko Institute of Mechanics, Ukrainian National Academy of SciencesKievUkraine
  2. 2.T. Shevchenko Kiev National UniversityKievUkraine
  3. 3.Sikorsky “Kyiv Polytechnic Institute” Ukrainian National Technical UniversityKievUkraine

Personalised recommendations