Advertisement

Journal of Mathematical Sciences

, Volume 239, Issue 1, pp 86–91 | Cite as

On geodesic bifurcations of product spaces

  • Lenka RýparováEmail author
  • Josef Mikeš
  • Almaz Sabykanov
Article
  • 3 Downloads

Abstract

The bifurcation is described as a situation where there exist at least two different geodesics going through the given point in the given direction. In the previous works, the examples of local and closed bifurcations are constructed. This paper is devoted to the further study of these bifurcations. We construct an example of n-dimensional (pseudo-) Riemannian and Kählerian spaces which are product ones that admit a local bifurcation of geodesics and also a closed geodesic.

Keywords

(pseudo-) Riemannian space product space geodesic geodesic bifurcation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. F. Borisov, “Irregular C 1-surfaces with an analytic metric,” Siberian Math. J., 45, No. 1, 19–52 (2004).MathSciNetCrossRefGoogle Scholar
  2. 2.
    N. H. Kuiper, “On C 1-isometric imbeddings. I,” Proc. Koninkl. Nederl. Akad. Wetensch. A, 58, 545–556 (1955).CrossRefzbMATHGoogle Scholar
  3. 3.
    J. Mikeš et al., Differential Geometry of Special Mappings, Palacky Univ. Press, Olomouc, 2015.Google Scholar
  4. 4.
    L. Rýparová and J. Mikeš, “On geodesic bifurcations,” Geometry, Integr., Quantiz., 18, 217–224 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    L. Rýparová and J. Mikeš, “Bifurcation of closed geodesics,” Geometry, Integr., Quantiz., 19, 188–192 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    H. Thielhelm, A. Vais, and F. E. Wolter, “Geodesic bifurcation on smooth surfaces,” Visual Computer, 31, No. 2, 187–204 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lenka Rýparová
    • 1
    Email author
  • Josef Mikeš
    • 1
  • Almaz Sabykanov
    • 2
  1. 1.Department of Algebra and GeometryPalacky University OlomoucOlomoucCzech Republic
  2. 2.Department of GeometryKyrgyz National UniversityBishkekKyrgyzstan

Personalised recommendations