Advertisement

Journal of Mathematical Sciences

, Volume 238, Issue 6, pp 870–882 | Cite as

Some Explicit Results for the Generalized Emptiness Formation Probability of the Six-Vertex Model

  • A. V. KitaevEmail author
  • A. G. Pronko
Article
  • 5 Downloads

We study a multi-point correlation function of the six-vertex model on the square lattice with domain wall boundary conditions which is called the generalized emptiness formation probability. This function describes the probability of observing ferroelectric order around all vertices of any Ferrers diagram λ at the top left corner of the lattice. For the free fermion model, we derive and compare explicit formulas for this correlation function in two cases: when the diagram λ has a square or a triangular shape. We find a connection between our formulas and the τ-function of the sixth Painlevé equation. Bibliography: 25 titles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. E. Korepin, “Calculations of norms of Bethe wave functions,” Comm. Math. Phys., 86, 391–418 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    A. G. Izergin, “Partition function of the six-vertex model in the finite volume,” Sov. Phys. Dokl., 32, 878–879 (1987).zbMATHGoogle Scholar
  3. 3.
    A. G. Izergin, D. A. Coker, and V. E. Korepin, “Determinant formula for the six-vertex model,” J. Phys. A, 25, 4315–4334 (1992).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    K. Eloranta, “Diamond ice,” J. Stat. Phys., 96, 1091–1109 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    P. Zinn-Justin, “The influence of boundary conditions in the six-vertex model,” arXiv:cond-mat/0205192.Google Scholar
  6. 6.
    F. Colomo and A. Sportiello, “Arctic curves of the six-vertex model on generic domains: the Tangent Method,” J. Stat. Phys., 164, 1488–1523 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge (1993).CrossRefzbMATHGoogle Scholar
  8. 8.
    N. M. Bogoliubov and C. L. Malyshev, “Integrable models and combinatorics,” Russian Math. Surveys, 70, 789–856 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    N. M. Bogoliubov, A. V. Kitaev, and M. B. Zvonarev, “Boundary polarization in the sixvertex model,” Phys. Rev. E, 65, 026126 (2002).MathSciNetCrossRefGoogle Scholar
  10. 10.
    N. M. Bogoliubov, A. G. Pronko, and M. B. Zvonarev, “Boundary correlation functions of the six-vertex model,” J. Phys. A, 35, 5525–5541 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    F. Colomo and A. G. Pronko, “Emptiness formation probability in the domain-wall sixvertex model,” Nucl. Phys. B, 798, 340–362 (2008).CrossRefzbMATHGoogle Scholar
  12. 12.
    F. Colomo and A. G. Pronko, “The arctic curve of the domain-wall six-vertex model,” J. Stat. Phys., 138, 662–700 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    A. G. Pronko, “On the emptiness formation probability in the free-fermion six-vertex model with domain wall boundary conditions,” J. Math. Sci., 192, 101–116 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    F. Colomo and A. G. Pronko, “Third-order phase transition in random tilings,” Phys. Rev. E, 88, 042125 (2013).CrossRefGoogle Scholar
  15. 15.
    F. Colomo and A. G. Pronko, “Thermodynamics of the six-vertex model in an L-shaped domain,” Comm. Math. Phys., 339, 699–728 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    A. V. Kitaev and A. G. Pronko, “Emptiness formation probability of the six-vertex model and the sixth Painlevé equation,” Comm. Math. Phys., 345, 305–354 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    F. Colomo, A. G. Pronko, and A. Sportiello, “Generalized emptiness formation probability in the six-vertex model,” J. Phys. A, 49, 415203 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    P. L. Ferrari and B. Vet˝o, “The hard-edge tacnode process for Brownian motion,” Electron. J. Probab., 22, No. 79 (2017).Google Scholar
  19. 19.
    R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, San Diego (1982).zbMATHGoogle Scholar
  20. 20.
    I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Oxford Univ. Press, Oxford (1995).zbMATHGoogle Scholar
  21. 21.
    A. Erdelyi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York (1953).zbMATHGoogle Scholar
  22. 22.
    M. Jimbo and T. Miwa, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II,” Phys. D, 2, 407–448 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    K. Okamoto, “Studies on the Painlevé equations. I. Sixth Painleve equation PVI,” Ann. Mat. Pura Appl., 146, 337–381 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    P. J. Forrester and N. S. Witte, “Application of the τ -function theory of Painlevé equations to random matrices: PVI, the JUE, CyUE, cJUE and scaled limits,” Nagoya Math. J., 174, 29–114 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    N. J. A. Sloane, “Sequence A106729,” The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A106729 .

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.St.Petersburg Department of Steklov Institute of MathematicsSt.PetersburgRussia

Personalised recommendations