The Bäcklund Transform and a New Exact Solution of the Born–Infeld Model

  • E. Sh. GutshabashEmail author
  • P. P. Kulish

We present the Lagrangian and Hamiltonian of the Born–Infeld model in Cartesian and light cone variables. Using the auto-Bäcklund transformation, we construct new solutions of the corresponding nonlinear equation. In particular, a “dressed” Barbashov–Chernikov solution is obtained. Bibliography: 18 titles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Born and L. Infeld, “Foundations of the new field theory,” Proc. R. Soc. London Ser. A, 144, 425–451 (1934).CrossRefzbMATHGoogle Scholar
  2. 2.
    D. D. Ivanenko and A. A. Sokolov, Classical Field Theory [in Russian], GITL, Moscow (1951).Google Scholar
  3. 3.
    S. V. Ketov, “Born–Infeld linear electrodynamics and string theory,” in: PIERS 2009 Moscow Proceeding, The Electromagnetics Academy, Cambridge (2009), pp. 110–113.Google Scholar
  4. 4.
    G. Felder, L. Kofman, and A. Starobinsky, “Caustics in tachyon matter and other Born–Infeld scalars,” J. High Energy Phys., 2002, No. 9, No. 026 (2002).Google Scholar
  5. 5.
    L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Wiley, New York (1958).zbMATHGoogle Scholar
  6. 6.
    E. Sh. Gutshabash, “Nonlinear sigma model, Zakharov–Shabat method, and new exact forms of the minimal surface in ℝ3,” JETP Letters, 99, 715–719 (2014).CrossRefGoogle Scholar
  7. 7.
    L. Faddeev and L. Takhtadjan, Hamiltonian Methods in the Theory of Solitons, Springer, Berlin (1987).CrossRefGoogle Scholar
  8. 8.
    M. Arik, F. Neyzi, Y. Nutku, P. Olver, and J. M. Verosky, “Multi-Hamiltonian structure of the Born–Infeld equation,” IMA Preprint Series, No. 497 (1989).Google Scholar
  9. 9.
    O. F. Men’shikh, “Conservation laws and B¨acklund transformations associated with the Born–Infeld equation,”Math. Notes, 77, No. 4, 510–522 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    K. Mallory, R. A. Van Gorder and K. Vajravelu, “Several classes of exact solutions to the 1+ 1 Born–Infeld equation,” Commun. Nonlinear Sci. Numer. Simul., 19, 1669–1674 (2014).MathSciNetCrossRefGoogle Scholar
  11. 11.
    W. I. Fushchich, V. M. Shtelen, and N. I. Serov, Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics, Kluwer, Dordrecht (1993).CrossRefzbMATHGoogle Scholar
  12. 12.
    B. M. Barbashov and N. A. Chernikov, “Solution and quantization of a nuclear twodimensional model for a Born–Infeld type field,” J. Experim. Theoret. Phys., 50, 1296–1308 (1996).Google Scholar
  13. 13.
    G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York (1974).zbMATHGoogle Scholar
  14. 14.
    A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals and Series: Elementary Functions, Vol 1, Gordon and Breach, Amsterdam (1998).zbMATHGoogle Scholar
  15. 15.
    J. Brunelli, M. G¨urses, and K. Zheltukhin, “On the integrability of a class of Monge–Ampère equations,” Rev. Math. Phys., 13, 529–543 (2001).MathSciNetzbMATHGoogle Scholar
  16. 16.
    E. Sh. Gutshabash, “On equation of minimal surface in ℝ3: different representations, properties of exact solutions, conservation laws,” Zap. Nauchn. Semin. POMI, 374, 121–135 (2010).MathSciNetGoogle Scholar
  17. 17.
    F. Calogero, “Why are certain nonlinear PDEs both widely applicable and integrable?”, in: V. E. Zakharov (ed.), What is Integrability?, Springer, Berlin-Heidelberg (1991), pp. 1–62.Google Scholar
  18. 18.
    M. Nadjafikhah and S. R. Hejazi, “Group analysis of Born–Infeld equation,” arXiv:1009/5490.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Bonch-Bruevich St.Petersburg State University of TelecommunicationsSt.PetersburgRussia
  2. 2.St.Petersburg Department of the Steklov Mathematical InstituteSt.PetersburgRussia

Personalised recommendations