Advertisement

Comparison of Asymptotic and Numerical Approaches to the Study of the Resonant Tunneling in Two-Dimensional Symmetric Quantum Waveguides of Variable Cross-Sections

  • M. M. KabardovEmail author
  • B. A. Plamenevskii
  • O. V. Sarafanov
  • N. M. Sharkova
Article
  • 2 Downloads

The waveguide considered coincides with a strip having two narrows of width ε. An electron wave function satisfies the Dirichlet boundary value problem for the Helmholtz equation. The part of the waveguide between the narrows serves as a resonator, and conditions for the electron resonant tunneling may occur. In the paper, asymptotic formulas as ε → 0 for characteristics of the resonant tunneling are used. The asymptotic results are compared with the numerical ones obtained by approximate calculation of the scattering matrix for energies in the interval between the second and third thresholds. The comparison allows us to state an interval of ε, where the asymptotic and numerical approaches agree. The suggested methods can be applied to more complicated models than that considered in the paper. In particular, the same approach can be used for asymptotic and numerical analysis of the tunneling in three-dimensional quantum waveguides of variable cross-sections. Bibliography: 3 titles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. M. Baskin, M. M. Kabardov, P. Neittaanmäki, B. A. Plamenevskii, and O. V. Sarafanov, “Asymptotic and numerical study of resonant tunneling in two-dimensional quantum waveguides of variable cross-sections,” Vychisl. Mat. Mat. Fiziks, 53, No. 11, 1664–1683 (2013).MathSciNetzbMATHGoogle Scholar
  2. 2.
    L. Baskin, P. Neittaanmäki, B. Plamenevskii, and O. Sarafanov, Resonant Tunneling: Quantum Waveguides of Variable Cross-Sections. Asymptotics, Numerics, and Applications, Lecture Notes on Numerical Methods in Engineering and Sciences, Springer (2015).Google Scholar
  3. 3.
    B. A. Plamenevskii and O. V. Sarafanov, “On a method for computing waveguide scattering matrices,” St. Petersburg Math. J., 23, No. 1, 139–160 (2012).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. M. Kabardov
    • 1
    Email author
  • B. A. Plamenevskii
    • 2
  • O. V. Sarafanov
    • 2
  • N. M. Sharkova
    • 2
  1. 1.St.Petersburg State University of TelecommunicationsSt.PetersburgRussia
  2. 2.St.Petersburg State UniversitySt.PetersburgRussia

Personalised recommendations