Advertisement

Journal of Mathematical Sciences

, Volume 238, Issue 4, pp 366–376 | Cite as

Gaussian Mixtures and Normal Approximation for V. N. Sudakov’s Typical Distributions

  • S. G. BobkovEmail author
  • G. P. Chistyakov
  • F. Götze
Article
  • 3 Downloads

We derive a general upper bound on the distance of the standard normal law to typical distributions in V. N. Sudakov’s theorem (in terms of the weighted total variation).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Anttila, K. Ball, and I. Perissinaki, “The central limit problem for convex bodies,” Trans. Amer. Math. Soc., 355, No. 12, 4723–4735 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    S. G. Bobkov, “On concentration of distributions of random weighted sums,” Ann. Probab., 31, 195–215 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    S. G. Bobkov, “Concentration of distributions of the weighted sums with Bernoullian coefficients,” in: Geometric Aspects of Functional Analysis, Lect. Notes Math., 1807 (2003), pp. 27–36.Google Scholar
  4. 4.
    S. G. Bobkov, “Concentration of normalized sums and a central limit theorem for noncorrelated random variables,” Ann. Probab., 32, 2884–2907 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    S. G. Bobkov, “On a theorem of V. N. Sudakov on typical distributions,” Zap. Nauchn. Semin. POMI, 368, 59–74 (2009).Google Scholar
  6. 6.
    S. G. Bobkov and F. Götze, “On the central limit theorem along subsequences of noncorrelated observations,” Teor. Veroyatn. Primen., 48, 745–765 (2003). Reprinted in: Theory Probab. Appl., 48, 604–621 (2004).Google Scholar
  7. 7.
    S. G. Bobkov and F. Götze, “Concentration inequalities and limit theorems for randomized sums,” Probab. Theory Rel. Fields, 137, 49–81 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    S. G. Bobkov and A. Koldobsky, “On the central limit property of convex bodies,” in: Geometric Aspects of Functional Analysis, Lect. Notes Math., 1807, 44–52 (2003).Google Scholar
  9. 9.
    R. Eldan and B. Klartag, “Pointwise estimates for marginals of convex bodies,” J. Funct. Anal., 254, 2275–2293 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Sequences of Random Variables. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov, Wolters-Noordhoff Publishing, Groningen (1971).Google Scholar
  11. 11.
    B. Klartag, “A central limit theorem for convex sets,” Invent. Math., 168, 91–131 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    B. Klartag, “Power-law estimates for the central limit theorem for convex sets,” J. Funct. Anal., 245, 284–310 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    B. Klartag, “Uniform almost sub-Gaussian estimates for linear functionals on convex sets,” Algebra Analiz, 19, 109–148 (2007).MathSciNetGoogle Scholar
  14. 14.
    B. Klartag, “A Berry–Esseen type inequality for convex bodies with an unconditional basis,” Probab. Theory Rel. Fields, 145, 1–33 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    V. K. Matskyavichyus, “A lower bound for the rate of convergence in the central limit theorem,” Teor. Veroyatn. Primen., 28, 565–569 (1983).MathSciNetzbMATHGoogle Scholar
  16. 16.
    M. W. Meckes, “Gaussian marginals of convex bodies with symmetries,” Beiträge Algebra Geom., 50, 101–118 (2009).MathSciNetzbMATHGoogle Scholar
  17. 17.
    S. V. Nagaev, “On the distribution of linear functionals in finite-dimensional spaces of large dimension,” Dokl. Akad. Nauk SSSR, 263, 295–297 (1982).MathSciNetGoogle Scholar
  18. 18.
    S. Sodin, “Tail-sensitive Gaussian asymptotics for marginals of concentrated measures in high dimension,” in: Geometric Aspects of Functional Analysis, Lect. Notes Math., 1910 (2007), pp. 271–295.Google Scholar
  19. 19.
    A. V. Sudakov and V. N. Sudakov, “Empirical distributions and dimension-invariant estimates for spread in the problem of typical distributions,” Zap. Nauchn. Semin. POMI, 260, 258–262 (1999).Google Scholar
  20. 20.
    V. N. Sudakov, “Typical distributions of linear functionals in finite-dimensional spaces of high dimension,” Soviet Math. Dokl., 19, 1578–1582 (1978).zbMATHGoogle Scholar
  21. 21.
    V. N. Sudakov, “Distributions of randomly selected random variables,” Zap. Nauchn. Semin. POMI, 216, 153–160 (1994).zbMATHGoogle Scholar
  22. 22.
    H. von Weizsäcker, “Sudakov’s typical marginals, random linear functionals and a conditional central limit theorem,” Probab. Theory Rel. Fields, 107, 313–324 (1997).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of MinnesotaMinneapolisUSA
  2. 2.University of BielefeldBielefeldGermany

Personalised recommendations