Advertisement

Journal of Mathematical Sciences

, Volume 238, Issue 2, pp 174–188 | Cite as

Parametric Optimization of the Transport Operations of a Two-Link Manipulator

  • М. V. Demydyuk
  • N. V. Hoshovs’ka
Article
  • 6 Downloads

We study the problem of optimization of motion of a two-link manipulator, which performs transport operations under the action of controls (moments of forces in the hinges). The initial and the final position of the gripping device of the manipulator and the time of the operation are regarded as known. The quality of motion of the manipulator is estimated by a quadratic functional. Possible configurations of the manipulator at the beginning and at the end of the operation are taken into account. We propose an algorithm for the construction of suboptimal solutions of the problem based on the parametrization of the angular coordinates of the manipulator by the sum of a cubic polynomial and a finite trigonometric series and on the use of the methods of inverse problems of dynamics and numerical procedures of nonlinear programming. The influence of configurations of the manipulator and the parameters of the trigonometric series on the characteristics of the suboptimal process is analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Avetisyan, “Optimization of configurations and directions of rotation of the links of a two-link manipulator according to the combined quality criteria,” Izv. Nats. Akad. Nauk Arm. Mekhanika, 51, No. 4, 65–71 (1998).Google Scholar
  2. 2.
    V. V. Avetisyan, L. D. Akulenko, and N. N. Bolotnik, “Optimization of the modes of control over manipulation robots with regard for energy consumption,” Izv. Akad. Nauk SSSR. Tekh. Kibernet., No. 3, 100–107 (1987).Google Scholar
  3. 3.
    V. V. Avetisyan and N. N. Bolotnik, “Suboptimal control over an electromechanical manipulator with high accuracy of positioning,” Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 5, 32–41 (1990).Google Scholar
  4. 4.
    I. E. Anufriev, A. B. Smirnov, and E. N. Smirnova, MATLAB 7 [in Russian], BKhV-Peterburg, St. Petersburg (2005).Google Scholar
  5. 5.
    V. E. Berbyuk, M. V. Demydyuk, and B. A. Lytvyn, “Mathematical modeling and optimization of walking of human being with prosthesis of crus,” Probl. Upravlen. Inform., No. 3, 128–144 (2005); English translation: J. Automat. Inform. Sci., 37, No. 6, 46–60 (2005).Google Scholar
  6. 6.
    N. N. Bolotnik and F. L. Chernousko, “Optimization of manipulation robot control,” Izv. Akad. Nauk SSSR. Tekh. Kibernet., No. 1, 189–238 (1990); English translation: Sov. J. Comput. Systems Sci., 28, No. 5, 127–169 (1990).Google Scholar
  7. 7.
    M. V. Demydyuk, “Optimization of the parameters and modes of control over a four-link closed-loop chain manipulator,” Prykl. Probl. Mekh. Mat., Issue 11, 164–173 (2013).Google Scholar
  8. 8.
    M. V. Demydyuk, “Parametric optimization of a four-link close-chain manipulator with active and passive actuators,” Mat. Met. Fiz.-Mekh. Polya, 52, No. 1, 193–202 (2009); English translation: J. Math. Sci, 168, No. 5, 746–758 (2010).Google Scholar
  9. 9.
    M. V. Demydyuk and N. V. Hoshovs’ka, “Parametric optimization of motion of a two-link manipulator with the use of orthogonal polynomials,” Prykl. Probl. Mekh. Mat., Issue 14, 140–147 (2016).Google Scholar
  10. 10.
    M. V. Demydyuk, B. A. Lytvyn, and B. M. Holub, “Parametric optimization of the gait of a biped robot,” Mat. Met. Fiz.-Mekh. Polya, 48, No. 3, 162–171 (2005).zbMATHGoogle Scholar
  11. 11.
    M. V. Demydyuk and M. I. Shyrko, “Optimization of the modes of motion and the parameters of a two-link manipulator with active and passive actuators,” Mat. Met. Fiz.-Mekh. Polya, 50, No. 2, 183–190 (2007).zbMATHGoogle Scholar
  12. 12.
    M. Demydyuk, “Optimization of the transport operations of a four-link close-chain manipulator,” Fiz.-Mat. Model. Inform. Tekhnol., Issue 20, 107–116 (2014).Google Scholar
  13. 13.
    M. V. Demydyuk and B. A. Lytvyn, “The mathematical modeling of the human gait with ankle hinged orthosis,” Probl. Upravlen. Informat., No. 2, 46-57 (2015); English translation: J. Automat. Inform. Sci., 47, No. 4, 64–77 (2015).Google Scholar
  14. 14.
    N. N. Krasovskii, Theory of Control over Motion [in Russian], Nauka, Moscow (1968).Google Scholar
  15. 15.
    S. V. Lutmanov, L. V. Kuksenok, and E. S. Popova, “Problems of control over two-chain manipulator with rotating kinematic pairs,” Fundament. Issled., No. 6 (Part 4), 886–891 (2013).Google Scholar
  16. 16.
    P. S. Sen’o, Probability Theory and Mathematical Statistics [in Ukrainian], Znannya, Kyiv (2007).Google Scholar
  17. 17.
    A. M. Formal’skii, “The time-optimal control of the bending of a plane two-link mechanism,” Prykl. Mat. Mekh., 60, No. 2, 250–259 (1996); English translation: J. Appl. Math. Mech., 60, No. 2, 243–251 (1996);  https://doi.org/10.1016/0021-8928(96)00031-7.
  18. 18.
    F. L. Chernousko, N. N. Bolotnik, and V. G. Gradetsky, Manipulation Robots: Dynamics, Control, and Optimization [in Russian], Nauka, Moscow (1989); English translation: CRC Press, Boca Raton (1994).Google Scholar
  19. 19.
    M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming: Theory and Algorithms, Wiley & Sons, Hoboken (2013).zbMATHGoogle Scholar
  20. 20.
    V. E. Berbyuk, B. Peterson, and M. I. Kudyn, “Internal torques of human upper extremity during its optimal motion in vertical plane,” in: C. Högfors (editor), Proc. of the 10th Biomechanics Seminar (Göteborg, Sweden), Vol. 10, Chalmers University of Technology, Göteborg (1997), pp. 66–83.Google Scholar
  21. 21.
    J. T. Betts, Practical Methods for Optimal Control Using Nonlinear Programming, SIAM, Philadelphia (2001).zbMATHGoogle Scholar
  22. 22.
    D. Fani and E. Shahraki, “Two-link robot manipulator using fractional order PID controllers optimized by evolutionary algorithms,” Biosci. Biotechnol. Res. Asia, 13, No. 1, 589–598 (2016).CrossRefGoogle Scholar
  23. 23.
    M. Khatri and P. Khatri, “Trajectory control of two link robotic manipulator using PID,” Golden Res. Thoughts, 3, No. 5, 1–7 (2013).Google Scholar
  24. 24.
    F. L. Lewis, D. M. Dawson, and C. T. Abdallah, Robot Manipulator Control: Theory and Practice, Marcel Dekker, New York (2004).Google Scholar
  25. 25.
    M. Lidberg and V. Berbyuk, “Optimization of controlled motion of closed-loop chain manipulator robots with different degree and type of actuation,” J. Stab. Control: Theory Appl. (SACTA), 4, No. 2, 56–73 (2002).Google Scholar
  26. 26.
    K. Lochan and B. K. Roy, “Control of two-link 2-DOF robot manipulator using fuzzy logic techniques: a review,” in: Proc. of the 4th Internat. Conf. on Soft Computing for Problem Solving (SocProS 2014), Vol. 1, Springer (2015), pp. 499–511.Google Scholar
  27. 27.
    F. Mezzadri and E. Galligani, “A Chebyshev technique for the solution of optimal control problems with nonlinear programming methods,” Math. Comput. Simulat., 121, 95–108 (2016);  https://doi.org/10.1016/j.matcom.2015.08.023.MathSciNetCrossRefGoogle Scholar
  28. 28.
    M. L. Nagurka and V. Yen, “Fourier-based optimal control of nonlinear dynamic systems,” Trans. ASME. J. Dynam. Syst., Meas. Control., 112, No. 1, 17–26 (1990).CrossRefzbMATHGoogle Scholar
  29. 29.
    L. Roussel, C. Canudas-de-Wit, and A. Goswami, “Generation of energy optimal complete gait cycles for biped robots,” Proc. of the 1998-IEEE Internat. Conf. on Robotics and Automation (May 16–20, 1998, Leuven, Belgium), Vol. 3, P. 2036–2041 (1998).Google Scholar
  30. 30.
    P. V. S. Subhashini, N. V. S. Raju, and G. V. Rao, “Modeling, simulation, and analysis of a SCARA robot for deburring of circular components,” ARPN J. Eng. Appl. Sci., 9, No. 4, 398–404 (2014).Google Scholar
  31. 31.
    E. Tohidi, O. R. N. Samadi, and M. H. Farahi, “Legendre approximation for solving a class of nonlinear optimal control problems,” J. Math. Finance, 1, No. 1, 8–13 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • М. V. Demydyuk
    • 1
  • N. V. Hoshovs’ka
    • 1
  1. 1.Pidstryhach Institute for Applied Problems in Mechanics and MathematicsUkrainian National Academy of SciencesLvivUkraine

Personalised recommendations