Advertisement

Journal of Mathematical Sciences

, Volume 238, Issue 1, pp 32–45 | Cite as

On Semitopological Bicyclic Extensions of Linearly Ordered Groups

  • O. V. Gutik
  • K. M. Maksymyk
Article
  • 3 Downloads

For a linearly ordered group G , we define a subset AG to be a shift-set if, for any x, y, z ϵ A with y < x, we get x · y-1 ··z ϵ A. We describe the natural partial order and solutions of equations on the semigroup B(A) of shifts of positive cones of A . We study topologizations of the semigroup B(A). In particular, we show that, for an arbitrary countable linearly ordered group G and a nonempty shift-set A of G , every Baire shift-continuous T1-topology τ on B(A) is discrete. We also prove that, for any linearly nondensely ordered group G and a nonempty shift-set A of G , every shift-continuous Hausdorff topology τ on the semigroup B (A) is discrete.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Vagner, “Generalized groups,” Dokl. Akad. Nauk SSSR, 84, No. 6, 1119–1122 (1952).MathSciNetGoogle Scholar
  2. 2.
    A. D. Taimanov, “On the topologization of commutative semigroups,” Mat. Zametki, 17, No. 5, 745–748 (1975); English translation: Math. Notes, 17, No. 5, 443–444 (1975).Google Scholar
  3. 3.
    A. D. Taimanov, “An example of a semigroup which admits only the discrete topology,” Algebra Logika, 12, No. 1, 114–116; English translation: Algebra Logic, 12, No. 1, 64–65 (1973).Google Scholar
  4. 4.
    K. R. Ahre, “Locally compact bisimple inverse semigroups,” Semigroup Forum, 22, No. 1, 387–389 (1981),  https://doi.org/10.1007/BF02572817.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    K. R. Ahre, “On the closure of \( {B}_{\left[0,\infty \right)}^1, \)İstanbul Tek. Üniv. Bül., 36, No. 4, 553–562 (1983).MathSciNetzbMATHGoogle Scholar
  6. 6.
    K. R. Ahre, “On the closure of \( {B}_{\left[0,\infty \right)}^1, \)İstanbul Tek. Üniv. Bül., 42, No. 3, 387–390 (1989).MathSciNetzbMATHGoogle Scholar
  7. 7.
    K. R. Ahre, “On the closure of \( {B}_{\left[0,\infty \right)}^{\prime }, \)Semigroup Forum, 28, No. 1-3, 377–378 (1984).MathSciNetCrossRefGoogle Scholar
  8. 8.
    K. R. Ahre, “On the closure of \( {B}_{\left[0,\infty \right)}^1, \)Semigroup Forum, 33, No. 2, 269–272 (1986).MathSciNetCrossRefGoogle Scholar
  9. 9.
    O. Andersen, Ein Bericht über die Struktur Abstrakter Halbgruppen, PhD Thesis, Hamburg (1952).Google Scholar
  10. 10.
    L. W. Anderson, R. P. Hunter, and R. J. Koch, “Some results on stability in semigroups,” Trans. Amer. Math. Soc., 117, 521–529 (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    T. O. Banakh, S. Dimitrova, and O. V. Gutik, “The Rees-Suschkewitsch theorem for simple topological semigroups,” Mat. Stud., 31, No. 2, 211–218 (2009).MathSciNetzbMATHGoogle Scholar
  12. 12.
    T. Banakh, S. Dimitrova, and O. Gutik, “Embedding the bicyclic semigroup into countably compact topological semigroups,” Topology Appl., 157, No. 18, 2803–2814 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    S. Bardyla, “Classifying locally compact semitopological polycyclic monoids,” Mat. Visn. NTSh, 13, 21–28 (2016).zbMATHGoogle Scholar
  14. 14.
    S. Bardyla and O. Gutik, “On a semitopological polycyclic monoid,” Algebra Discrete Math., 21, No. 2, 163–183 (2016).MathSciNetzbMATHGoogle Scholar
  15. 15.
    M. O. Bertman and T. T. West, “Conditionally compact bicyclic semitopological semigroups,” Proc. Roy. Irish Acad. Sec. A: Math. Phys. Sci., 76, 219–226 (1976), http://www.jstor.org/stable/20489047.MathSciNetzbMATHGoogle Scholar
  16. 16.
    G. Birkhoff, Lattice Theory, Amer. Math. Soc., Providence, RI (1973), Amer. Math. Soc. Colloq. Publ., Vol. 25.Google Scholar
  17. 17.
    J. H. Carruth, J. A. Hildebrant, and R. J. Koch, The Theory of Topological Semigroups, Marcel Dekker, New York, etc. (1983), Vol. 1 (1986), Vol. 2.Google Scholar
  18. 18.
    I. Ya. Chuchman and O. V. Gutik, “Topological monoids of almost monotone injective cofinite partial self-maps of the set of positive integers,” Karpat. Mat. Publ., 2, No. 1, 119–132 (2010).zbMATHGoogle Scholar
  19. 19.
    I. Chuchman and O. Gutik, “On monoids of injective partial self-maps almost everywhere the identity,” Demonstr. Math., 44, No. 4, 699–722 (2011),  https://doi.org/10.1515/dema-2013-0340.zbMATHGoogle Scholar
  20. 20.
    A. Clay and D. Rolfsen, Ordered Groups and Topology, Amer. Math. Soc., Providence, RI (2016), Ser. Graduate Studies in Mathematics, Vol. 176.Google Scholar
  21. 21.
    A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Amer. Math. Soc., Providence, RI (1961), Vol. 1 (1972), Vol. 2.Google Scholar
  22. 22.
    C. Eberhart and J. Selden, “On the closure of the bicyclic semigroup,” Trans. Amer. Math. Soc., 144, 115–126 (1969).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    R. Engelking, General Topology, Heldermann, Berlin (1989).zbMATHGoogle Scholar
  24. 24.
    I. R. Fihel and O. V. Gutik, “On the closure of the extended bicyclic semigroup,” Karpat. Mat. Publ., 3, No. 2, 131–157 (2011).zbMATHGoogle Scholar
  25. 25.
    G. L. Fotedar, “On a class of bisimple inverse semigroups,” Riv. Mat. Univ. Parma. Ser. 4, 4, 49–53 (1978).MathSciNetzbMATHGoogle Scholar
  26. 26.
    G. L. Fotedar, “On a semigroup associated with an ordered group,” Math. Nachr., 60, No. 1-6, 297–302 (1974), DOI:  https://doi.org/10.1002/mana.19740600128.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    L. Fuchs, Partially Ordered Algebraic Systems, Pergamon Press, Oxford, etc. (1963).Google Scholar
  28. 28.
    O. Gutik, “On the dichotomy of a locally compact semitopological bicyclic monoid with adjoined zero,” Visn. Lviv. Univ. Ser. Mekh.-Mat., Vyp. 80, 33–41 (2015).Google Scholar
  29. 29.
    O. Gutik, “Topological properties of Taimanov semigroups,” Mat. Visn. NTSh, 13, 29–34 (2016).zbMATHGoogle Scholar
  30. 30.
    O. Gutik and K. Maksymyk, “On semitopological interassociates of the bicyclic monoid,” Visn. Lviv. Univ. Ser. Mekh.-Mat., Vyp. 82, 98–108 (2016).Google Scholar
  31. 31.
    O. Gutik, D. Pagon, and K. Pavlyk, “Congruences on bicyclic extensions of a linearly ordered group,” Acta Comment. Univ. Tartu. Math., 15, No. 2, 61–80 (2011).MathSciNetzbMATHGoogle Scholar
  32. 32.
    O. Gutik and I. Pozdnyakova, “On monoids of monotone injective partial self-maps of L n × lex with co-finite domains and images,” Algebra Discrete Math., 17, No. 2, 256–279 (2014).MathSciNetzbMATHGoogle Scholar
  33. 33.
    O. Gutik and D. Repovš, “On countably compact 0-simple topological inverse semigroups,” Semigroup Forum, 75, No. 2, 464–469 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    O. Gutik and D. Repovš, “On monoids of injective partial self-maps of integers with cofinite domains and images,” Georgian Math. J., 19, No. 3, 511–532 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    O. Gutik and D. Repovš, “Topological monoids of monotone, injective partial self-maps of ℕ having cofinite domain and image,” Stud. Sci. Math. Hungar., 48, No. 3, 342–353 (2011).zbMATHGoogle Scholar
  36. 36.
    R. C. Haworth and R. A. McCoy, Baire Spaces, Inst. Matematyczny Polskiej Akad. Nauk, Warszawa (1977), http://eudml.org/doc/268479.zbMATHGoogle Scholar
  37. 37.
    J. A. Hildebrant and R. J. Koch, “Swelling actions of Γ -compact semigroups,” Semigroup Forum, 33, 65–85 (1986).MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    R. J. Koch and A. D. Wallace, “Stability in semigroups,” Duke Math. J., 24, No. 2, 193–195 (1957); doi: https://doi.org/10.1215/S0012-7094-57-02425-0.MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    R. Korkmaz, “Dense inverse subsemigroups of a topological inverse semigroup,” Semigroup Forum, 78, No. 3, 528–535 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    R. Korkmaz, On the closure of \( {B}_{\left[-\infty, +\infty \right)}^2, \)Semigroup Forum, 54, No. 2, 166–174 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    M. Lawson, Inverse Semigroups. The Theory of Partial Symmetries, World Sci, Singapore (1998).CrossRefzbMATHGoogle Scholar
  42. 42.
    Z. Mesyan, J. D. Mitchell, M. Morayne, and Y. H. Péresse, “Topological graph inverse semigroups,” Topol. Appl., 208, 106–126 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    M. Petrich, Inverse Semigroups, Wiley, New York (1984).zbMATHGoogle Scholar
  44. 44.
    W. Ruppert, Compact Semitopological Semigroups: An Intrinsic Theory, Lect. Notes Math., 1079, Springer, Berlin (1984).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • O. V. Gutik
    • 1
  • K. M. Maksymyk
    • 1
  1. 1.I. Franko Lviv National UniversityLvivUkraine

Personalised recommendations