Advertisement

Journal of Mathematical Sciences

, Volume 238, Issue 1, pp 22–31 | Cite as

On the Solvability of a System of Matrix Equations AX = B and BY = A Over Associative Rings

  • V. M. Prokip
Article
  • 9 Downloads

We establish necessary and sufficient conditions for the solvability of a system of matrix equations AX = B and BY = A over associative rings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Prokip, “On the solvability of a system of linear equations over the domain of principal ideals,” Ukr. Mat. Zh., 66, No. 4, 566–570 (2014); English translation: Ukr. Math. J., 66, No. 4, 633–637 (2014).Google Scholar
  2. 2.
    S. Friedland, Matrices: Algebra, Analysis, and Applications, World Scientific, Singapore (2015).Google Scholar
  3. 3.
    J. A. Green, “On the structure of semigroups,” Ann. Math. Second Series, 54, No. 1, 163–172 (1951); http://www.jstor.org/stable/1969317.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    R. E. Hartwig and M. S. Putcha, “Semisimilarity for matrices over a division ring,” Linear Algebra Appl., 39, 125–132 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    X. Mary, “On generalized inverses and Green’s relations,” Linear Algebra Appl., 434, No. 8, 1836–1844 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    J. S. Montague and R. J. Plemmons, “Convex matrix equations,” Bull. Amer. Math. Soc., 78, No. 6, 965–968 (1972);  https://doi.org/10.1090/S0002-9904-1972-13070-2.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    J. S. Montague and R. J. Plemmons, “Doubly stochastic matrix equations,” Israel J. Math., 15, No. 3, 216–229 (1973).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    M. Newman, “A note on matrix equivalence,” Linear Multilinear Algebra, 5, No. 4, 265–266 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    M. Newman, Integral Matrices, Series of Pure and Applied Mathematics, Vol. 45, Academic Press, New York (1972).Google Scholar
  10. 10.
    C. E. Robinson Jr., “Green’s relations for substochastic matrices,” Linear Algebra Appl., 80, 39–53 (1986).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    S. Yang and R. Zhang, “Green’s relations in the matrix semigroup M n (S),” Linear Algebra Appl., 222, 63–76 (1995).Google Scholar
  12. 12.
    E. Steinitz, “Rechteckige Systeme und Moduln in algebraischen Zahlkörpern,” Math. Ann., 71, No. 3, 328–354 (1911);  https://doi.org/10.1007/BF01456849.
  13. 13.
    B. M. Stewart, “A note on least common left multiples,” Bull. Amer. Math. Soc., 55, No. 6, 587–591 (1949).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    J. R. Wall, “Green’s relations for stochastic matrices,” Czechoslovak Math. J., 25, No. 2, 247–260 (1975); https://dml.cz/handle/10338.dmlcz/101315.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. M. Prokip
    • 1
  1. 1.Pidstryhach Institute for Applied Problems in Mechanics and MathematicsUkrainian National Academy of SciencesLvivUkraine

Personalised recommendations