Advertisement

Journal of Mathematical Sciences

, Volume 237, Issue 6, pp 810–818 | Cite as

Comparison of Stochastic Correlation Models

  • L. MárkusEmail author
  • A. Kumar
Article
  • 5 Downloads

Five models of stochastic correlation are compared on the basis of the generated associations of Wiener processes. Associations are characterised by the copulas and their K-functions. A confidence domain for the randomly changing K-functions is build on the basis of simulated Wiener process pairs. The models are ordered by the magnitude of the domains of confidence bounds. Larger confidence domains or higher bounds represent higher correlation risk when the models are applied in mathematical finance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Bertino, “Sulla dissomiglianza tra mutabili cicliche,” Metron, 35, No. 1–2, 53–88 (1977).MathSciNetzbMATHGoogle Scholar
  2. 2.
    A. Burachi, P. Porchia, and F. Trojani, “Correlation risk and optimal portfolio choice,” J. Finance, 65, 393–420 (2006).CrossRefGoogle Scholar
  3. 3.
    X. Burtschell, J. Gregory, and J-P. Laurent, “Beyond the gaussian copula: stochastic and local correlation,” J. Credit Risk, 3, No. 1, 31–62 (2007).CrossRefGoogle Scholar
  4. 4.
    P. Carr, “Bounded Brownian motion,” Risks, 5, No. 4, 1–11 (2017).CrossRefGoogle Scholar
  5. 5.
    C. Gourieroux, J. Jasiak, and R. Sufana, “The Wishart autoregressive process of multivariate stochastic volatility,” J. Econom., 150, 167–181 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    J. Da Fonseca, M. Grasselli, and F. Ielpo, “Estimating the Wishart affine stochastic correlation model using the empirical characteristic function,” Stud. Nonlinear Dyn. Econ., 18, No. 3, 1–37 (2014).MathSciNetzbMATHGoogle Scholar
  7. 7.
    K. Duellmann, J. Küll, and M. Kunisch, “Estimating asset correlations from stock prices or default rates: which method is superior?,” J. Econ. Dyn. Control, 34, 2341-2357 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    C. Emmerich, “Modeling correlation as a stochastic process,” Preprint No. 06/03 2006, Bergische Universität Wuppertal (2006).Google Scholar
  9. 9.
    C. Genest and L.P. Rivest, “Statistical inference procedures for bivariate archimedean copula,” J. Am. Stat. Assoc., 8, 1034–1043 (1993).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    C. Genest, J.-F. Quessy, and B. Remillard, “Goodness-of-fit procedures for copula models based on the integral probability transformation,” Scand. J. Stat., 33, 337–366 (2006).CrossRefzbMATHGoogle Scholar
  11. 11.
    C. Gouriéroux and P. Valéry, “Estimation of a Jacobi process,” Preprint (2004).Google Scholar
  12. 12.
    C. Genest, B. Remillard, and D. Beaudoin, “Goodness-of-fit tests for copulas: a review and a power study,” Insur. Math. Econ., 44, No. 2, 199–213 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    J. Hull , M. Predescu, and A. White, “The Valuation of correlation-dependent credit derivatives using a structural model,” J. Credit Risk, 6, No. 3, 99–132 (2010).CrossRefGoogle Scholar
  14. 14.
    A. Itkin, Pricing Derivatives under Levy Models. Pseudo-Differential Operators, Birkhauser, Boston (2017).CrossRefzbMATHGoogle Scholar
  15. 15.
    J. Ma, “Pricing foreign equity options with stochastic correlation and volatility,” Ann. Econ. Finance, 10, No. 2, 303–327 (2009).Google Scholar
  16. 16.
    R. B Nelsen and M. Úbeda-Flores, “Directional dependence in multivariate distributions,” Ann. Inst. Stat. Math., 64, No. 3, 677–685 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    P. Rakonczai and A. Zempln, “Copulas and goodness of fit tests,” Rec. Adv. Stoch. Mod. Data An., 198–205 (2008).Google Scholar
  18. 18.
    L. Teng, M. Ehrhardt, and M.J. Günther, “Modelling stochastic correlation,” Math. Ind., 6, No. 2 (2016).Google Scholar
  19. 19.
    S. Zhang, O. Okhrin, Q.M. Zhou, and P. X.-K. Song, “Goodness-of-fit test for specification of semi parametric copula dependence models,” J. Econ., 193, 215–233 (2016).CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Eötvös Loránd University, Department of Probability Theory and StatisticsBudapestHungary

Personalised recommendations