Journal of Mathematical Sciences

, Volume 237, Issue 4, pp 530–545 | Cite as

On Contact Between a Thin Obstacle and a Plate Containing a Thin Inclusion

  • A. I. FurtsevEmail author

We consider problems governing a contact between an elastic plate with a thin elastic inclusion and a thin elastic obstacle and study the equilibrium of the plate with or without cuts. We discuss various statements and establish the existence of a solution. We analyze the limit problem as the rigidity parameter of the elastic inclusion tends to infinity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston etc. (1985).zbMATHGoogle Scholar
  2. 2.
    A. M. Khludnev and V. A. Kovtunenko, Analysis of Cracks in Solids, WIT Press, Southampton etc. (2000).Google Scholar
  3. 3.
    A. M. Khludnev, Elasticity Problems in Nonsmooth Domains [in Russian], Fizmatlit, Moscow (2010).Google Scholar
  4. 4.
    A. L. Bessoud, F. Krasucki, and M. Serpilli, “Plate–like and shell–like inclusions with high rigidity,” C. R., Math., Acad. Sci. Paris 346, No. 11-12, 697–702 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    N. V. Neustroeva, “A rigid inclusion in the contact problem for elastic plates,” J. Appl. Ind. Math. 4, No. 4, 526–538 (2010).MathSciNetCrossRefGoogle Scholar
  6. 6.
    A. M. Khludnev, “On bending an elastic plate with a delaminated thin rigid inclusion,” J. Appl. Ind. Math. 5, No. 4, 582–594 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    E. M. Rudoy, “The Griffith formula and Cherepanov-Rice integral for a plate with a rigid inclusion and a crack,” J. Math. Sci., New York 186, No. 3, 511–529 (2012).MathSciNetCrossRefGoogle Scholar
  8. 8.
    A. M. Khludnev and M. Negri, “Optimal rigid inclusion shapes in elastic bodies with cracks,” Z. Angew. Math. Phys. 64, No. 1, 179–191 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    N. P. Lazarev, “Fictitious domain method in the equilibrium problem for a Timoshenko type plate contacting with a rigid obstacle,” J. Math. Sci., New York 203, No. 4, 527–539 (2014).MathSciNetCrossRefGoogle Scholar
  10. 10.
    V. V. Shcherbakov, “Existence of an optimal shape of the thin rigid inclusions in the Kirchhoff–Love plate,” J. Appl. Ind. Math. 8, No. 1, 97–105 (2014).MathSciNetCrossRefGoogle Scholar
  11. 11.
    V. V. Shcherbakov, “Choosing an optimal shape of thin rigid inclusions in elastic bodies,” J. Appl. Mech. Tech. Phys. 56, No. 2, 321–329 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    L. A. Caffarelli and A. Friedman, “The obstacle problem for the biharmonic operator,” Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 6, No. 1, 151–184 (1979).MathSciNetzbMATHGoogle Scholar
  13. 13.
    G. Dal Maso and G. Paderni, “Variational inequalities for the biharmonic operator with variable obstacles,” Ann. Mat. Pura Appl., IV. Ser. 153, No. 1, 203–227 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    A. M. Khludnev, K.- H. Hoffmann, and N. D. Botkin, “The variational contact problem for elastic objects of different dimensions,” Sib. Math. J. 47, No. 3, 584–593 (2006).CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Lavrent’ev Institute of Hydrodynamics SB RAS 15NovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations