Journal of Mathematical Sciences

, Volume 237, Issue 3, pp 426–431 | Cite as

Detection of Communities in a Graph of Interactive Objects

  • M. I. Kolomeychenko
  • I. V. Polyakov
  • A. A. Chepovskiy
  • A. M. Chepovskiy


This article describes the problem of analysis of social network graphs and other interacting objects. It also presents community detection algorithms in social networks and their classification and analysis. In addition, it considers applicability of algorithms for real tasks in social network graph analysis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Aggarwal, Social Network Data Analytics, Springer, New York (2011).CrossRefzbMATHGoogle Scholar
  2. 2.
    T. V. Batura, “Methods of analysis of computer social networks,” Vestn. NGU. Ser. “Inform. Technol.”, 10, No. 4, 13–28 (2012).Google Scholar
  3. 3.
    N. I. Bazenkov and D. A. Gubanov, “Information systems for social networks analysis: a survey,” Upravl. Bolsh. Sist., 41, 357–394 (2013).Google Scholar
  4. 4.
    P. Borgatti, G. Everett, and C. Johnson, Analyzing Social Networks, SAGE Publ. (2013).Google Scholar
  5. 5.
    V. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of communities in large networks,” J. Stat. Mech. Theory Exp., 10, 10008 (2008).CrossRefGoogle Scholar
  6. 6.
    A. Clauset, M. E. J. Newman, and C. Moore, “Finding community structure in very large networks,” Phys. Rev., E 70, No. 6, 066111 (2004).Google Scholar
  7. 7.
    M. Domenico, A. Lancichinetti, A. Arenas, and M. Rosvall, “Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems,” Phys. Rev., X 5, 011027 (2015).CrossRefGoogle Scholar
  8. 8.
    L. Donetti and M. A. Muñoz, Improved Spectral Algorithm for the Detection of Network Communities, arXiv:physics/0504059 (2005).Google Scholar
  9. 9.
    A. Esquivel and M. Rosvall, “Compression of flow can reveal overlapping modular organization in networks,” Phys. Rev., X 1, 021025 (2011).CrossRefGoogle Scholar
  10. 10.
    S. Fortunato, “Community detection in graphs,” Phys. Rep., 486, No. 3, 75–174 (2010).MathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Girvan and M. E. J. Newman, “Community structure in social and biological networks,” Proc. Natl. Acad. Sci. USA, 99, No. 12, 7821–7826 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    D. A. Gubanov, D. A. Novikov, and A. G. Chkhartishvili, Social Networks: Information Model of Influence, Control and Confrontation [in Russian], Fizmatlit: MCNMO, Moscow (2010).Google Scholar
  13. 13.
    M. I. Kolomeychenko, A. A. Chepovskiy, and A. M. Chepovskiy, “Community detection algorithm in social networks,” Fundam. Prikl. Mat., 19, No. 1, 21–32 (2014).zbMATHGoogle Scholar
  14. 14.
    M. I. Kolomeychenko and A. M. Chepovskiy, “Visualization and analysis of large graphs,” Biznes-Inform., No. 4 (30), 7–16 (2014).Google Scholar
  15. 15.
    R. Lambiotte and M. Rosvall, “Ranking and clustering of nodes in networks with smart teleportation,” Phys. Rev., E 85, 056107 (2012).Google Scholar
  16. 16.
    A. Lancichinetti and S. Fortunato, “Community detection algorithms: a comparative analysis,” Phys. Rev., E 80, 056117 (2009).Google Scholar
  17. 17.
    L. Lovasz, “Random walks on graphs: A survey,” in: D. Miklós, V. T. Sós, and T. Szőnyi, eds., Combinatorics, Paul Erdős is Eighty, Bolyai Soc. Math. Stud., Vol. 2, Budapest (1996), pp. 1–46.Google Scholar
  18. 18.
    M. E. J. Newman, “The structure and function of complex networks,” SIAM Rev., 45, No. 10, 167–256 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    M. E. J. Newman, “Fast algorithm for detecting community structure in networks,” Phys. Rev., E 69, 066133 (2004).Google Scholar
  20. 20.
    M. E. J. Newman, “Modularity and community structure in networks,” Proc. Natl. Acad. Sci. USA, 103, No. 23, 8577–8582 (2006).CrossRefGoogle Scholar
  21. 21.
    M. E. J. Newman, Networks: An Introduction, Oxford Univ. Press, Oxford (2010).CrossRefzbMATHGoogle Scholar
  22. 22.
    M. E. J. Newman and M. Girvan, “Finding and evaluating community structure in networks,” Phys. Rev., E 69, 026113 (2004).Google Scholar
  23. 23.
    G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, “Uncovering the overlapping community structure of complex networks in nature and society,” Nature, 435, 814–818 (2005).CrossRefGoogle Scholar
  24. 24.
    F. Radicchi, C. Castellano, V. Loreto, F. Cecconi, and D. Parisi, “Defining and identifying communities in networks,” Proc. Natl. Acad. Sci. USA, 101, No. 9, 2658–2663 (2004).CrossRefGoogle Scholar
  25. 25.
    M. Rosvall and C. T. Bergstrom, “An information-theoretic framework for resolving community structure in complex networks,” Proc. Natl. Acad. Sci. USA, 104, No. 18, 7327–7331 (2007).CrossRefGoogle Scholar
  26. 26.
    M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex networks reveal community structure,” Proc. Natl. Acad. Sci. USA, 105, No. 4, 1118–1123 (2008).CrossRefGoogle Scholar
  27. 27.
    M. Rosvall, C. T. Bergstrom, and D. Axelsson, “The map equation,” Eur. Phys. J. Special Topics, 178, No. 1, 13–23 (2009).CrossRefGoogle Scholar
  28. 28.
    M. Rosvall, A. Esquivel, A. Lancichinetti, J. West, and R. Lambiotte, “Memory in network flows and its effects on spreading dynamics and community,” Nature Commun., 5, 4630 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. I. Kolomeychenko
    • 1
  • I. V. Polyakov
    • 2
  • A. A. Chepovskiy
    • 2
  • A. M. Chepovskiy
    • 2
  1. 1.Federal Research Center “Information and Management” of the Russian Academy of SciencesMoscowRussia
  2. 2.National Research University “The Higher School of Economics”MoscowRussia

Personalised recommendations