Complete Systems of Eigenfunctions of the Vladimirov Operator in L2(Br) and L2(ℚp)
Article
First Online:
- 3 Downloads
Abstract
We construct new bases of real functions from L2(Br) and from L2(ℚp). These functions are eigenfunctions of the p-adic pseudo-differential Vladimirov operator, which is defined on a compact set Br ⊂ ℚp of the field of p-adic numbers ℚp or, respectively, on the entire field ℚp. A relation between the basis of functions from L2(ℚp) and the basis of p-adic wavelets from L2(ℚp) is found. As an application, we consider the solution of the Cauchy problem with the initial condition on a compact set for a pseudo-differential equation with a general pseudo-differential operator that is diagonal in the basis constructed.
Preview
Unable to display preview. Download preview PDF.
References
- 1.S. Albeverio, A. Yu. Khrennikov, and V. M. Shelkovich, Theory of p-Adic Distributions: Linear and Nonlinear Models, Cambridge Univ. Press, Cambridge (2010).CrossRefzbMATHGoogle Scholar
- 2.V. A. Avetisov, A. Kh. Bikulov, S. V. Kozyrev, and V. A. Osipov, “p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes,” J. Phys. A: Math. Gen., 35, 177–189 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
- 3.V. A. Avetisov, A. Kh. Bikulov, and V. A. Osipov, “p-adic description of characteristic relaxation in complex systems,” J. Phys. A: Math. Gen., 36, 4239–4246 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
- 4.V. A. Avetisov, A. Kh. Bikulov, and A. P. Zubarev, “First passage time distribution and the number of returns for ultrametric random walks,” J. Phys. A: Math. Theor., 42, 085003–085020 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
- 5.V. A. Avetisov, A. Kh. Bikulov, and A. P. Zubarev, “Ultrametric random walk and dynamics of protein molecules,” Proc. Inst. Math., 285, 3–25 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
- 6.V. A. Avetisov, A. Kh. Bikulov, and A. P. Zubarev, “Mathematical modeling of molecular ‘nano-machines’,” Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 1, No. 22, 9–15 (2011).CrossRefGoogle Scholar
- 7.C. P. Bachas and B. A. Huberman, “Complexity and the relaxation of hierarchical structures,” Phys. Rev. Lett., 57, 1965–1969 (1986).MathSciNetCrossRefGoogle Scholar
- 8.A. Kh. Bikulov and I. V. Volovich, “p-adic Brownian motion,” Izv. RAN. Ser. Mat., 61, No. 3, 75–90 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
- 9.A. Kh. Bikulov and A. P. Zubarev, “Application of p-adic analysis methods in describing Markov processes on ultrametric spaces isometrically embedded into Q p,” p-Adic Numbers Ultrametric Anal. Appl., 7, No. 2, 111–122 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
- 10.A. Kh. Bikulov, A. P. Zubarev, and L. V. Kaidalova, “Hierarchic dynamic model of financial market near crash points and p-adic mathematical analysis,” Vestn. Samar. Gos. Tekh. Univ., 42, 135–141 (2006).CrossRefGoogle Scholar
- 11.M. V. Dolgopolov and A. P. Zubarev, “Some aspects of m-adic analysis and its applications to m-adic stochastic processes,” p-Adic Numbers Ultrametric Anal. Appl., 3, No. 1, 39–51 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
- 12.B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, and I. V. Volovich, “On p-adic mathematical physics,” p-Adic Numbers Ultrametric Analysis Appl., 1, No. 1, 1–17 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
- 13.E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Springer, Berlin (1987).Google Scholar
- 14.A. N. Kochubei, Pseudodifferential Equations and Stochastics over Non-Archimedean Fields, CRC Press, New York (2001).CrossRefzbMATHGoogle Scholar
- 15.S. V. Kozyrev, “Wavelet theory as p-adic spectral analysis,” Izv. Math., 66, No. 2, 367–376 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
- 16.S. V. Kozyrev, “p-adic pseudodifferential operators and p-adic wavelets,” Theor. Math. Phys., 138, No. 3, 322–332 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
- 17.S. V. Kozyrev and A. Yu. Khrennikov, “Pseudodifferential operators on ultrametric spaces and ultrametric wavelets,” Izv. RAN. Ser. Mat., 69, No. 5, 133–148 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
- 18.W. G. Motyl, “Dynamics on random ultrametric spaces,” J. Phys. A: Math. Gen., 20, 5481–5488 (1987).MathSciNetCrossRefGoogle Scholar
- 19.O. G. Smolyanov and N. N. Shamarov, “Feynman formulas and path integrals for evolution equations with the Vladimirov operator,” Proc. Steklov Inst. Math., 265, 217–228 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
- 20.O. G. Smolyanov and N. N. Shamarov, “Hamiltonian Feynman formulas for equations containing the Vladimirov operator with variable coefficients,” Dokl. Math., 84, No. 2, 689–694 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
- 21.V. S. Vladimirov, “Generalized functions over the field of p-adic numbers,” Russ. Math. Surv., 43, No. 5, 19–64 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
- 22.V. S. Vladimirov, p-Adic Analysis and p-Adic Quantum Mechanics, Ann. New York Acad. Sci.: Symp. Frontiers Math. (1988).Google Scholar
- 23.V. S. Vladimirov, “On the spectrum of some pseudodifferential operators over the field of p-adic numbers,” Leningrad Math. J., 2, No. 6, 1261–1278 (1991).MathSciNetzbMATHGoogle Scholar
- 24.V. S. Vladimirov, “Ramified characters of idèle groups of one-class quadratic fields,” Proc. Steklov Inst. Math., 224, 107–114 (1999).zbMATHGoogle Scholar
- 25.V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics, World Scientific, Singapore (1994).CrossRefzbMATHGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2019