Advertisement

Journal of Mathematical Sciences

, Volume 237, Issue 3, pp 362–374 | Cite as

Complete Systems of Eigenfunctions of the Vladimirov Operator in L2(Br) and L2(ℚp)

  • A. Kh. BikulovEmail author
  • A. P. Zubarev
Article
  • 3 Downloads

Abstract

We construct new bases of real functions from L2(Br) and from L2(ℚp). These functions are eigenfunctions of the p-adic pseudo-differential Vladimirov operator, which is defined on a compact set Br ⊂ ℚp of the field of p-adic numbers ℚp or, respectively, on the entire field ℚp. A relation between the basis of functions from L2(ℚp) and the basis of p-adic wavelets from L2(ℚp) is found. As an application, we consider the solution of the Cauchy problem with the initial condition on a compact set for a pseudo-differential equation with a general pseudo-differential operator that is diagonal in the basis constructed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Albeverio, A. Yu. Khrennikov, and V. M. Shelkovich, Theory of p-Adic Distributions: Linear and Nonlinear Models, Cambridge Univ. Press, Cambridge (2010).CrossRefzbMATHGoogle Scholar
  2. 2.
    V. A. Avetisov, A. Kh. Bikulov, S. V. Kozyrev, and V. A. Osipov, “p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes,” J. Phys. A: Math. Gen., 35, 177–189 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    V. A. Avetisov, A. Kh. Bikulov, and V. A. Osipov, “p-adic description of characteristic relaxation in complex systems,” J. Phys. A: Math. Gen., 36, 4239–4246 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    V. A. Avetisov, A. Kh. Bikulov, and A. P. Zubarev, “First passage time distribution and the number of returns for ultrametric random walks,” J. Phys. A: Math. Theor., 42, 085003–085020 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    V. A. Avetisov, A. Kh. Bikulov, and A. P. Zubarev, “Ultrametric random walk and dynamics of protein molecules,” Proc. Inst. Math., 285, 3–25 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    V. A. Avetisov, A. Kh. Bikulov, and A. P. Zubarev, “Mathematical modeling of molecular ‘nano-machines’,” Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 1, No. 22, 9–15 (2011).CrossRefGoogle Scholar
  7. 7.
    C. P. Bachas and B. A. Huberman, “Complexity and the relaxation of hierarchical structures,” Phys. Rev. Lett., 57, 1965–1969 (1986).MathSciNetCrossRefGoogle Scholar
  8. 8.
    A. Kh. Bikulov and I. V. Volovich, “p-adic Brownian motion,” Izv. RAN. Ser. Mat., 61, No. 3, 75–90 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A. Kh. Bikulov and A. P. Zubarev, “Application of p-adic analysis methods in describing Markov processes on ultrametric spaces isometrically embedded into Q p,” p-Adic Numbers Ultrametric Anal. Appl., 7, No. 2, 111–122 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    A. Kh. Bikulov, A. P. Zubarev, and L. V. Kaidalova, “Hierarchic dynamic model of financial market near crash points and p-adic mathematical analysis,” Vestn. Samar. Gos. Tekh. Univ., 42, 135–141 (2006).CrossRefGoogle Scholar
  11. 11.
    M. V. Dolgopolov and A. P. Zubarev, “Some aspects of m-adic analysis and its applications to m-adic stochastic processes,” p-Adic Numbers Ultrametric Anal. Appl., 3, No. 1, 39–51 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, and I. V. Volovich, “On p-adic mathematical physics,” p-Adic Numbers Ultrametric Analysis Appl., 1, No. 1, 1–17 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Springer, Berlin (1987).Google Scholar
  14. 14.
    A. N. Kochubei, Pseudodifferential Equations and Stochastics over Non-Archimedean Fields, CRC Press, New York (2001).CrossRefzbMATHGoogle Scholar
  15. 15.
    S. V. Kozyrev, “Wavelet theory as p-adic spectral analysis,” Izv. Math., 66, No. 2, 367–376 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    S. V. Kozyrev, “p-adic pseudodifferential operators and p-adic wavelets,” Theor. Math. Phys., 138, No. 3, 322–332 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    S. V. Kozyrev and A. Yu. Khrennikov, “Pseudodifferential operators on ultrametric spaces and ultrametric wavelets,” Izv. RAN. Ser. Mat., 69, No. 5, 133–148 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    W. G. Motyl, “Dynamics on random ultrametric spaces,” J. Phys. A: Math. Gen., 20, 5481–5488 (1987).MathSciNetCrossRefGoogle Scholar
  19. 19.
    O. G. Smolyanov and N. N. Shamarov, “Feynman formulas and path integrals for evolution equations with the Vladimirov operator,” Proc. Steklov Inst. Math., 265, 217–228 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    O. G. Smolyanov and N. N. Shamarov, “Hamiltonian Feynman formulas for equations containing the Vladimirov operator with variable coefficients,” Dokl. Math., 84, No. 2, 689–694 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    V. S. Vladimirov, “Generalized functions over the field of p-adic numbers,” Russ. Math. Surv., 43, No. 5, 19–64 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    V. S. Vladimirov, p-Adic Analysis and p-Adic Quantum Mechanics, Ann. New York Acad. Sci.: Symp. Frontiers Math. (1988).Google Scholar
  23. 23.
    V. S. Vladimirov, “On the spectrum of some pseudodifferential operators over the field of p-adic numbers,” Leningrad Math. J., 2, No. 6, 1261–1278 (1991).MathSciNetzbMATHGoogle Scholar
  24. 24.
    V. S. Vladimirov, “Ramified characters of idèle groups of one-class quadratic fields,” Proc. Steklov Inst. Math., 224, 107–114 (1999).zbMATHGoogle Scholar
  25. 25.
    V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics, World Scientific, Singapore (1994).CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Chemical PhysicsMoscowRussia
  2. 2.Physics DepartmentSamara State Aerospace UniversitySamaraRussia
  3. 3.Physics and Chemistry DepartmentSamara State University of Railway TransportSamaraRussia

Personalised recommendations