Advertisement

Journal of Mathematical Sciences

, Volume 236, Issue 5, pp 527–531 | Cite as

Framings of Spatial Graphs

  • V. M. NezhinskijEmail author
  • Yu. V. Maslova
Article
  • 15 Downloads

In the theory of spatial graphs, we state and prove an analog of the theorem on the isotopy classification of framings of classical knots.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. N. Gusarov, “Variations of knotted graphs. The geometric technique of n-equivalence,” St.Petersburg Math. J., 12, No. 4, 569–604 (2001).MathSciNetzbMATHGoogle Scholar
  2. 2.
    L. H. Kauffmann, “Invariants of graphs in three-space,” Trans. Amer. Math. Soc., 311, No. 2, 697–710 (1989).MathSciNetCrossRefGoogle Scholar
  3. 3.
    Yu. V. Maslova and V. M. Nezhinskij, “Two-chord framings of spanning trees,” J. Math. Sci., 212, No. 5, 577–583 (2016).MathSciNetCrossRefGoogle Scholar
  4. 4.
    V. M. Nezhinskij and Yu. V. Maslova, “Graphs with framed vertices,” J. Math. Sci., 212, No. 5, 584–586 (2016).MathSciNetCrossRefGoogle Scholar
  5. 5.
    V. M. Nezhinskij and Yu. V. Maslova, “Links of graphs with framed vertices,” Vestn. SPbGU, Ser. Mat., Mekh., Astr., No. 2, 57–60 (2012).Google Scholar
  6. 6.
    V. M. Nezhinskij, “Space graphs, tangles and flat trees,” to appear in Algebra Analiz.Google Scholar
  7. 7.
    V. G. Turaev, Quantum Invariants of Knots and 3-Manifolds, Walter de Gruyter, Berlin (1994).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.St. Petersburg State University and Herzen State Pedagogical University of RussiaSt. PetersburgRussia
  2. 2.Herzen State Pedagogical University of RussiaSt. PetersburgRussia

Personalised recommendations