Advertisement

Journal of Mathematical Sciences

, Volume 236, Issue 4, pp 419–429 | Cite as

The Volume Fraction of One of the Phases in Equilibrium Two-Phase Elastic Medium

  • V. G. Osmolovskii
Article
  • 23 Downloads

The relationship between the volume fraction of one phase of an equilibrium two-phase medium and other characteristics of the equilibrium state is studied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Allaire, Shape Optimization by the Homogenization Method, Springer-Verlag, New York (2002).CrossRefGoogle Scholar
  2. 2.
    G. Allaire and V. Lods, “Minimizers for double-well problem with affine boundary conditions,” Proc. Roy. Soc. Edinburgh Sect., 129A, No. 3, 439–466 (1999).MathSciNetCrossRefGoogle Scholar
  3. 3.
    B. Dacorogna, Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin (1989).CrossRefGoogle Scholar
  4. 4.
    M. A. Grinfeld, Methods of Continuum Mechanics in the Theory of Phase Transitions [in Russian], Nauka, Moscow (1990).Google Scholar
  5. 5.
    V. G. Osmolovskii, “Exact solutions to the variational problem of the phase transition theory in continuum mechanics,” J. Math. Sci., 120, 1167–1190 (2004).MathSciNetCrossRefGoogle Scholar
  6. 6.
    V. G. Osmolovskii, “Independence of temperature of phase transitions of the domain occupied by a two-phase elastic medium,” J. Math. Sci., 186, No. 2, 302–306 (2012).MathSciNetCrossRefGoogle Scholar
  7. 7.
    V. G. Osmolovskii, “Mathematical problems of the theory of phase transitions in a mechanics of continua,” St. Petersburg Mathematical Society Preprint, No. 4 (2014), http://www.mathsoc.spb.ru/preprint/2014/index.html.
  8. 8.
    V. G. Osmolovskii, “Computation of phase transition temperatures for anisotropic model of a two-phase elastic medium,” J. Math. Sci., 216, No. 2, 313–324 (2016).MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Saks, Theory of the Integral, Hafner Publ. Co, New York (1938).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations