Journal of Mathematical Sciences

, Volume 236, Issue 4, pp 413–418 | Cite as

On the Spectra of Boundary Value Problems Generated by Some One-Dimensional Embedding Theorems

  • A. M. MinarskyEmail author
  • A. I. Nazarov

The spectra of boundary value problems related to one-dimensional high order embedding theorems are considered. It is proved that for some orders, the eigenvalues corresponding to even eigenfunctions of different problems cannot coincide.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    X. Ai and W. Li, “Karhunen–Loève expansions for the m-th order detrended Brownian motion,” Science China Math., 57, No. 10, 2043–2052 (2014).MathSciNetCrossRefGoogle Scholar
  2. 2.
    X. Ai, W. Li, and G. Liu, “Karhunen–Loève expansions for the detrended Brownian motion,” Stat. Probab. Letters, 82, No. 7, 1235–1241 (2012).CrossRefGoogle Scholar
  3. 3.
    M. S. Birman and M. Z. Solomyak, Spectral Theory of Self-Adjoint Operators in Hilbert Space, 2nd ed., Lan’ (2010).Google Scholar
  4. 4.
    G. Cimmino, “Su una questione di minimo,” Boll. Un. Mat. Ital., 9, 1–6 (1930).zbMATHGoogle Scholar
  5. 5.
    I. S. Gradstein and I. M. Ryzhik, Tables of Integrals, Sums, Series and Products, 5th ed., Nauka, Moscow (1971).Google Scholar
  6. 6.
    M. Janet, “Sur la méthode de Legendre–Jacobi–Clebsch et quelques-unes de ses applications,” Bull. Sci. Math., 53, 144–160 (1929).zbMATHGoogle Scholar
  7. 7.
    M. Janet, “Sur une suite de fonctions considérée par Hermite et son application à un problème du calcul des variations,” C.R.A.S. Paris, 190, 32 (1930).zbMATHGoogle Scholar
  8. 8.
    M. Janet, “Les valeurs moyennes des carrés de deux dérivées dordre consécutifs, et le développement en fraction continue de tan(x),” Bull. Sci. Math., 2, No. 55, 1–13 (1931).zbMATHGoogle Scholar
  9. 9.
    M. Janet, “Sur le minimum du rapport de certaines intégrales,” C.R.A.S. Paris, 193, 977–979 (1931).zbMATHGoogle Scholar
  10. 10.
    M. G. Krein, “Oscillation theorems for ordinary differential operators of arbitrary order,” DAN SSSR, 25, No. 9, 717–720 (1939).Google Scholar
  11. 11.
    N. G. Kuznetsov and A. I. Nazarov, “Sharp constants in Poincaré, Steklov and related inequalities (a survey),” Mathematika, 61, 328–344 (2015).MathSciNetCrossRefGoogle Scholar
  12. 12.
    A. Ju. Levin and G. D. Stepanov, “One-dimensional boundary value problems with operators that do not lower the number of sign changes. I,” Sib. Mat. Zh., 17, No. 3, 606–626 (1976).MathSciNetGoogle Scholar
  13. 13.
    F. Lindemann F., “Über die Zahl π,” Math. Ann., 20, 213–225 (1882).MathSciNetCrossRefGoogle Scholar
  14. 14.
    D. S. Mitrinović and P. M. Vasić, “An integral inequality ascribed to Wirtinger, and its variations and generalizations,” Publ. fac. d’électrotech. l’Univ. Belgrade, Sér. Math. et Phys., No. 272, 157–170 (1969).Google Scholar
  15. 15.
    A. I. Nazarov and A. N. Petrova, “On exact constants in some embedding theorems of high order,” Vestn. SPbGU, Ser. 1, No. 4, 16–20 (2008).MathSciNetCrossRefGoogle Scholar
  16. 16.
    Yu. P. Petrova, “Spectral asymptotics for problems with integral constraints,” Mat. Zam., 102, No. 3, 405–414 (2017).MathSciNetCrossRefGoogle Scholar
  17. 17.
    A. S. Slastenin, “Exact constants in some one-dimensional embedding theorems,” Master thesis, SPbGU, St. Petersburg (2014)Google Scholar
  18. 18.
    V. A. Steklov, “The problem of cooling an inhomogeneous solid rod,” Commun. Kharkov Math. Soc., Ser. 2, 5, 136–181 (1896).Google Scholar
  19. 19.
    W. Stekloff, “Problème de refroidissement d’une barre hétérogène,” Ann. Fac. Sci. Toulouse, Sér. 2, 3, 281–313 (1901).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.St. Petersburg Academic UniversitySt. PetersburgRussia
  2. 2.St. Petersburg Department of the Steklov Mathematical InstituteSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations