Journal of Mathematical Sciences

, Volume 236, Issue 3, pp 313–332 | Cite as

Bifurcation Conditions for the Solutions of the Lyapunov Equation in a Hilbert Space

  • E. V. PanasenkoEmail author
  • O. O. Pokutnyi

We establish sufficient conditions for the bifurcation of solutions of the boundary-value problems for the Lyapunov equation in Hilbert spaces. The cases where the generating equation has or does not have solutions are analyzed. As an example, we consider the problem in the space l2 of sequences with matrices of countable dimensions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Arnold, Theory of Catastrophes [in Russian], Nauka, Moscow (1990).Google Scholar
  2. 2.
    R. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York (1960).Google Scholar
  3. 3.
    M. M. Vainberg and V. A. Trenogin, Theory of Branching of the Solutions of Nonlinear Equations [in Russian], Nauka, Moscow (1969).Google Scholar
  4. 4.
    Yu. L. Daletskii and M. G. Krein, Stability of Solutions of Differential Equations in Banach Spaces [in Russian], Nauka, Moscow (1970).Google Scholar
  5. 5.
    S. G. Krein, Linear Differential Equations in Banach Spaces [in Russian], Nauka, Moscow (1967).Google Scholar
  6. 6.
    S. G. Krein, Linear Equations in Banach Spaces [in Russian], Nauka, Moscow (1971).Google Scholar
  7. 7.
    A. H. Nayfeh, Perturbation Methods, Wiley, New York (1973).zbMATHGoogle Scholar
  8. 8.
    S. M. Chuiko, “Generalized Green operator of the Noetherian boundary-value problem for a matrix differential equation,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat. No. 8, 74–83 (2016).Google Scholar
  9. 9.
    B. Bamieh and M. Dahleh, “Energy amplification in channel flows with stochastic excitation,” Phys. Fluids, 13, 3258–3269 (2001).MathSciNetCrossRefGoogle Scholar
  10. 10.
    R. Bhatia, “A note on the Lyapunov equation,” Linear Algebra Appl., 259, 71–76 (1997).MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, De Gruyter, Berlin (2016).Google Scholar
  12. 12.
    O. A. Boichuk and S. A. Krivosheya, “Criterion for the solvability of matrix equations of the Lyapunov type,” Ukr. Mat. Zh., 50, No. 8, 1021–1026 (1998); English translation: Ukr. Math. J., 50, No. 8, 1162–1169 (1998).Google Scholar
  13. 13.
    A. N. Bondarev and V. N. Laptinskii, “Multipoint boundary-value problem for the Lyapunov equation in the case of strong degeneration of the boundary conditions,” Different. Equat., 47, No. 6, 778–786 (2011).MathSciNetCrossRefGoogle Scholar
  14. 14.
    S. M. Chuiko, “On the solution of matrix Lyapunov equations,” Visn. Kharkiv. Univ., Ser. Mat. Prikl. Mat. Mekh., No. 1120, 85–94 (2014).Google Scholar
  15. 15.
    R. Datko, “Extending a theorem of A. M. Lyapunov to Hilbert space,” J. Math. Anal. Appl., 32, 610–616 (1970).Google Scholar
  16. 16.
    V. Druskin, L. Knizhnerman, and V. Simoncini, “Analysis of the rational Krylov subspace and ADI methods for solving the Lyapunov equation,” SIAM J. Numer. Anal., 49, No. 5, 1875–1898 (2011).MathSciNetCrossRefGoogle Scholar
  17. 17.
    T. E. Duncana, B. Maslowski, and B. Pasik-Duncana, “Stochastic equations in Hilbert space with a multiplicative fractional Gaussian noise,” Stochast. Proc. Appl., 115, 1357–1383 (2005).MathSciNetCrossRefGoogle Scholar
  18. 18.
    H. Kielhöfer, “On the Lyapunov stability of stationary solutions of semilinear parabolic differential equations,” J. Different. Equat., 22, 193–208 (1976).MathSciNetCrossRefGoogle Scholar
  19. 19.
    V. I. Man’ko and M. R. Vilela, “Lyapunov exponent in quantum mechanics. A phase-space approach,” Physica D, 145, 330–348 (2000).Google Scholar
  20. 20.
    E. V. Panasenko and O. O. Pokutnyi, “Boundary-value problems for the Lyapunov equation in Banach spaces,” Nelin. Kolyv., 19, No. 2, 240–246 (2016); English translation: J. Math. Sci., 223, No. 3, 298–304 (2017).Google Scholar
  21. 21.
    E. V. Panasenko and O. O. Pokutnyi, “Boundary-value problems for differential equations in a Banach space with unbounded operatorin the linear part,” Nelin. Kolyv., 16, No. 4, 518–526 (2013); English translation: J. Math. Sci., 203, No. 3, 366–374 (2014).Google Scholar
  22. 22.
    A. Pazy, “On the applicability of Lyapunov’s theorem in Hilbert space,” SIAM J. Math. Anal., 3, No. 2, 291–294 (1972).MathSciNetCrossRefGoogle Scholar
  23. 23.
    O. O. Pokutnyi, “Generalized inverse operator in Fréchet, Banach, and Hilbert spaces,” Visn. Kyiv. Nats. Univ., Ser. Fiz.-Mat. Nauk., No 4, 158–161 (2013).Google Scholar
  24. 24.
    K. M. Przyluski, ”The Lyapunov equation and the problem of stability for linear bounded discrete-time systems in Hilbert space,” Appl. Math. Optim., 6, No. 1, 97–112 (1980).Google Scholar
  25. 25.
    I. G. Rosen and C.Wang, “A multilevel technique for the approximate solution of operator Lyapunov and algebraic Riccati equations,” SIAM J. Numer. Anal., 32, No. 2, 514–541 (1995).Google Scholar
  26. 26.
    D. Sather, “Branching of solutions of an equation in Hilbert space,” Arch. Ration. Mech. Anal., 36, 47–64 (1970).MathSciNetCrossRefGoogle Scholar
  27. 27.
    V, N. Phat and T. T. Kiet, “On the Lyapunov equation in Banach spaces and applications to control problems,” Int. J. Math. Math. Sci., 29, No. 3, 155–166 (2002).Google Scholar
  28. 28.
    J. T.-Yu. Wen and M. J. Balas, “Robust adaptive control in Hilbert space,” J. Math. Anal. Appl., 143, 1–26 (1989).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Zaporizhzhya National UniversityZaporizhzhyaUkraine
  2. 2.Institute of Mathematics, Ukrainian National Academy of SciencesKyivUkraine

Personalised recommendations