Advertisement

Journal of Mathematical Sciences

, Volume 236, Issue 3, pp 225–237 | Cite as

On the Asymptotic Properties of Solutions of Functional-Differential Equations with Linearly Transformed Argument

  • D. V. Bel’skii
  • G. P. Pelyukh
Article
  • 2 Downloads

We establish new properties the of solutions of functional-differential equation with linearly transformed argument

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Kato and J. B. McLeod, “The functional-differential equation y′(x) = ay.(λx) + by. (x);” Bull. Amer. Math. Soc., 77, 891–937 (1971).MathSciNetCrossRefGoogle Scholar
  2. 2.
    N. G. de Bruijn, “The difference-differential equation F′(x) = e α x + β F (x - ) I, II,” Ned. Akad. Wetensch. Proc. Ser. A 56-Indag. Math., 15, 449–464 (1953).MathSciNetCrossRefGoogle Scholar
  3. 3.
    P. O. Frederickson, “Series solutions for certain functional-differential equations,” in: Lecture Notes in Mathematics, 243 (1971), pp. 249–254.Google Scholar
  4. 4.
    G. P. Pelyukh and A. N. Sharkovskii, Introduction to the Theory of Functional Equations [in Russian], Naukova Dumka, Kiev (1974).Google Scholar
  5. 5.
    G. A. Derfel’, “Probabilistic method for a class of functional-differential equations,” Ukr. Mat. Zh., 41, No. 10, 1483–1491 (1989); English translation: Ukr. Math. J., 41, No. 10, 1137–1141 (1989).Google Scholar
  6. 6.
    V. M. Polishchuk and A. N. Sharkovskii, “Representation of solutions of linear difference-differential equations of neutral type,” Differents. Uravn., 9, No. 9, 1627–1645 (1973).Google Scholar
  7. 7.
    P. O. Frederickson, “Global solutions to certain nonlinear functional differential equations,” J. Math. Anal. Appl., 33, 355–358 (1971).MathSciNetCrossRefGoogle Scholar
  8. 8.
    I. Gumovski and C. Mira, Recurrences and Discrete Dynamic Systems, Springer, Berlin (1980).CrossRefGoogle Scholar
  9. 9.
    G. P. Pelyukh and D. V. Bel’skii’, On the Asymptotic Properties of Solutions of Functional and Functional-Differential Equations with Linearly Transformed Argument [in Russian], Preprint, Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (2011).zbMATHGoogle Scholar
  10. 10.
    G. P. Pelyukh and D. V. Bel’skii, “On the asymptotic properties of solutions of some functional-differential equations,” Nelin. Kolyv., 19, No. 3, 311–348 (2016); English translation: J. Math. Sci., 226, No. 3, 197–239 (2017).Google Scholar
  11. 11.
    D. V. Bel’skii and G. P. Pelyukh, “On the asymptotic properties of solutions of one functional-differential equation with linearly transformed argument,” Nelin. Kolyv., 16, No. 3, 291–313 (2013); English translation: J. Math. Sci., 201, No. 3, 263-287 (2014).Google Scholar
  12. 12.
    G. P. Pelyukh and D. V. Bel’skii, “On the asymptotic properties of solutions of a linear functional-differential equation of neutral type with constant coefficients and linearly transformed argument,” Nelin. Kolyv., 15, No. 4, 466–493 (2012); English translation: J. Math. Sci., 194, No. 4, 374–403 (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • D. V. Bel’skii
    • 1
  • G. P. Pelyukh
    • 1
  1. 1.Institute of MathematicsUkrainian National Academy of SciencesKyivUkraine

Personalised recommendations