Journal of Mathematical Sciences

, Volume 234, Issue 5, pp 697–700

# On Cubic Exponential Sums and Gauss Sums

Article
Let eq be a nontrivial additive character of a finite field 𝔽q of order q ≡ 1(mod 3) and let ψ be a cubic multiplicative character of 𝔽q, ψ(0) = 0. Consider the cubic Gauss sum and the cubic exponential sum
$$G\left(\psi \right)=\sum \limits_{z\in {\mathbb{F}}_q}{e}_q(z)\psi (z),\kern0.5em C\left(\omega \right)=\sum \limits_{z\in {\mathbb{F}}_q}{e}_q\left(\frac{z^3}{\omega }-3z\right),\kern0.5em \omega \in {\mathbb{F}}_q,\kern1em \omega \ne 0.$$
It is proved that for all nonzero a, b ∈ 𝔽q,
$$\frac{1}{q}\sum \limits_nC(an)C(bn)\psi (n)+\frac{1}{q}\psi (ab)G{\left(\psi \right)}^2=\overline{\psi}(ab)\psi \left(a-b\right)\overline{G\left(\psi \right)},$$

where the summation runs over all nonzero n ∈ 𝔽q.

## Preview

Unable to display preview. Download preview PDF.

## References

1. 1.
N. V. Proskurin, “Convolutions of twisted Kloosterman sums,” Zap. Nauchn. Semin. POMI, 302, 96–106 (2003).Google Scholar
2. 2.
W. Duke and H. Iwaniec, “A relation between cubic exponential and Kloosterman sums,” Contemp. Math., 143, 255–258 (1993).
3. 3.
J. Booher, A. Etropolski, and A. Hittson, “Evaluations of cubic twisted Kloosterman sheaves,” Int. J. Number Theory, 6, 1349–1365 (2010).
4. 4.
K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Second ed. (Grad. Texts Math., 84), Springer-Verlag (1990).Google Scholar
5. 5.
D. J. Wright, “Cubic character sums of cubic polynomials,” Proc. Amer. Math. Soc., 100, No. 3, 409–413 (1987).