Advertisement

Journal of Mathematical Sciences

, Volume 234, Issue 1, pp 61–72 | Cite as

The Cauchy–Stieltjes integrals in the theory of analytic functions

  • Vladimir I. Ryazanov
Article
  • 15 Downloads

Abstract

We study various Stieltjes integrals as Poisson–Stieltjes, conjugate Poisson–Stieltjes, Schwartz–Stieltjes, and Cauchy–Stieltjes ones and prove theorems on the existence of their finite angular limits a.e. in terms of the Hilbert–Stieltjes integral. These results hold for arbitrary bounded integrands that are differentiable a.e. and, in particular, for integrands of the class \( \mathcal{C}\mathrm{\mathcal{B}}\mathcal{V} \) (countably bounded variation).

Keywords

Stieltjes Poisson–Stieltjes Schwartz–Stieltjes Cauchy–Stieltjes and Hilbert–Stieltjes integrals harmonic and analytic functions angular limits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Borovkov, Probability Theory, Gordon and Breach, Amsterdam, 1998.zbMATHGoogle Scholar
  2. 2.
    O. Dovgoshey, O. Martio, V. Ryazanov, and M. Vuorinen, “The Cantor function,” Expo. Math., 24, 1–37 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    P. L. Duren, Theory of H p Spaces, Academic Press, New York, 1970.zbMATHGoogle Scholar
  4. 4.
    E. M. Dyn’kin, “Methods of the theory of singular integrals (the Hilbert transform and Calderón–Zygmund theory),” in: Current Problems in Mathematics. Fundamental Directions [in Russian], VINITI, Moscow, 1987, pp. 197–292.Google Scholar
  5. 5.
    J. B. Garnett and D. E. Marshall, Harmonic Measure, Cambridge Univ. Press, Cambridge, 2005.CrossRefzbMATHGoogle Scholar
  6. 6.
    F. W. Gehring, “On the Dirichlet problem,” Michigan Math. J., 3, 201 (1955–1956).MathSciNetCrossRefGoogle Scholar
  7. 7.
    G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence, RI, 1969.Google Scholar
  8. 8.
    V. P. Havin, “Boundary properties of integrals of Cauchy type and of conjugate harmonic functions in regions with rectifable boundary,” Mat. Sborn., 68 (110), 499–517 (1965).Google Scholar
  9. 9.
    P. L. Hennequin and A. Tortrat, Theorie des Probabilites et Quelques Applications, Masson, Paris, 1965.zbMATHGoogle Scholar
  10. 10.
    S. V. Kislyakov, “Classical problems of Fourier analysis,” in: Current Problems in Mathematics. Fundamental Directions [in Russian], VINITI, Moscow, 1987, pp. 135–195.Google Scholar
  11. 11.
    P. Koosis, Introduction to H p Spaces, Cambridge Univ. Press, Cambridge, 1998.zbMATHGoogle Scholar
  12. 12.
    N. N. Luzin, “On the main theorem of integral calculus,” Mat. Sborn., 28, 266–294 (1912).Google Scholar
  13. 13.
    N. N. Luzin, Integral and Trigonometric Series [in Russian], Dissertation, Moscow, 1915.Google Scholar
  14. 14.
    N. N. Luzin, Integral and Trigonometric Series [in Russian], edited by N.K. Bari and D.E. Men’shov, GITTL, Moscow-Leningrad, 1951.Google Scholar
  15. 15.
    N. Luzin, “Sur la notion de l’integrale,” Annali Mat. Pura e Appl., 26, No. 3, 77–129 (1917).CrossRefGoogle Scholar
  16. 16.
    R. Nevanlinna, Eindeutige Analytische Funktionen, Edwards, Ann Arbor, 1944.zbMATHGoogle Scholar
  17. 17.
    W. F. Pfeffer, “Integration by parts for the generalized Riemann–Stieltjes integral,” J. Austral. Math. Soc. Ser. A, 34, No. 2, 229–233 (1983).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, Berlin, 1992.CrossRefzbMATHGoogle Scholar
  19. 19.
    I. Privaloff, “Sur l’integrale du type de Cauchy–Stieltjes,” Bull. Acad. Sci. URSS. Ser. Math., 4, 261–276 (1940).MathSciNetzbMATHGoogle Scholar
  20. 20.
    I. I. Priwalow, Introduction to the Theory of Functions of One Complex Variable [in Russian], Nauka, Moscow, 1977.Google Scholar
  21. 21.
    I. I. Priwalow, Randeigenschaften Analytischer Funktionen, Wissenschaften, Berlin, 1956.Google Scholar
  22. 22.
    V. Ryazanov, “On the Riemann–Hilbert problem without index,” Ann. Univ. Bucharest. Ser. Math., 5 (LXIII), No. 1, 169–178 (2014).MathSciNetzbMATHGoogle Scholar
  23. 23.
    V. Ryazanov, “Infinite dimension of solutions of the Dirichlet problem,” Open Math., 13, No. 1, 348–350 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    V. Ryazanov, “Correlation of boundary behavior of conjugate harmonic functions,” Proc. IAMM NASU, 31 (to appear); see also arXiv.org: 1710.00323v1 [math.CV].
  25. 25.
    V. Ryazanov and A. Yefimushkin, “On the Riemann—Hilbert problem for the Beltrami equations,” Contemp. Math., 667, 299–316 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    S. Saks, Theory of the Integral, Dover, New York, 1964.zbMATHGoogle Scholar
  27. 27.
    V. Smirnoff, “Sur les valeurs limites des fonctions, regulieres a l’interieur d’un cercle,” J. Soc. Phys.-Math. Leningrad, 2, No. 2, 22–37 (1929).MathSciNetzbMATHGoogle Scholar
  28. 28.
    A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge, 1959.Google Scholar
  29. 29.
    A. Yefimushkin, “On Neumann and Poincaré problems in A-harmonic analysis,” Adv. in Analysis, 1, No. 2, 114–120 (2016); see also arXiv.org: 1608.08457v1 [math.CV] 30 Aug 2016, 1–14.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Applied Mathematics and Mechanics of the NAS of UkraineSlavyanskUkraine

Personalised recommendations