Advertisement

Journal of Mathematical Sciences

, Volume 233, Issue 6, pp 949–957 | Cite as

Magnetic Schrödinger Operator from the Point of View of Noncommutative Geometry

  • A. G. Sergeev
Article
  • 4 Downloads

Abstract

We give an interpretation of the magnetic Schrödinger operator in terms of noncommutative geometry. In particular, spectral properties of this operator are reformulated in terms of C*-algebras. Using this reformulation, one can employ the machinery of noncommutative geometry, such as Hochschild cohomology, to study the properties of the magnetic Schrödinger operator. We show how this idea can be applied to the integer quantum Hall effect.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bellisard, A. van Elst and H. Schulz-Baldes, “The noncommutative geometry of the quantum Hall effect,” J. Math. Phys., 35, 5373–5451 (1994).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    F. A. Berezin and V. A. Shubin, The Schrödinger Equation, Kluwer, Boston (1991).CrossRefMATHGoogle Scholar
  3. 3.
    A. Connes, Noncommutative Geometry, Academic Press, San Diego (1994).MATHGoogle Scholar
  4. 4.
    M. Gruber, “Noncommutative Bloch theory,” J. Math. Phys., 42, 2438–2465 (2001).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    D. Husemoller, Fibre Bundles, Springer, New York (1994).CrossRefMATHGoogle Scholar
  6. 6.
    Yu. Kordyukov, V. Mathai, and M. A. Shubin, “Equivalence of spectral properties in semiclassical limit and a vanishing theorem for higher traces in K-theory,” J. Reine Angew. Math., 581, 193–236 (2005).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    B. Laughlin, “Quantized Hall Conductivity in two dimensions,” Phys. Rev., B23, 5232 (1981).Google Scholar
  8. 8.
    D. J. Thouless, M. Kohmono, M. P. Nightingale, and M. den Nijs, “Quantized Hall conductance in a two-dimensional periodic potential,” Phys. Rev. Lett., 49, 405–408 (1982).CrossRefGoogle Scholar
  9. 9.
    J. Xia, “Geometric invariants of the quantum Hall effect,” Commun. Math. Phys., 119, 29–50 (1988).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteMoscowRussia

Personalised recommendations