Advertisement

Journal of Mathematical Sciences

, Volume 233, Issue 6, pp 777–806 | Cite as

Nonstationary Problem of Complex Heat Transfer in a System of Semitransparent Bodies with Boundary-Value Conditions of Diffuse Reflection and Refraction of Radiation

  • A. A. Amosov
Article
  • 6 Downloads

Abstract

We consider a nonstationary initial boundary-value problem describing complex (radiative-conductive) heat transfer in a system of semitransparent bodies. To describe radiation propagation, we use the radiation transfer equation with boundary-value conditions of diffuse reflection and refraction of radiation. We take into account that the radiation intensity and optical properties of bodies depend on the radiation frequency. The unique solvability of a weak solution is established. The comparison theorem is proved. A priori estimates of a weak solution as well as its regularity are obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Agoshkov, Boundary Value Problems for Transport Equations: Functional Spaces, Variational Statements, Regularity of Solutions, Birkhauser, Boston–Basel–Berlin (1998).CrossRefGoogle Scholar
  2. 2.
    A. A. Amosov, “The solvability of a problem of radiation heat transfer,” Soviet Phys. Dokl., 24, No. 4, 261-262 (1979).Google Scholar
  3. 3.
    A. A. Amosov, “The limit connection between two problems of radiation heat transfer,” Soviet Phys. Dokl., 24, No. 6, 439–441 (1979).Google Scholar
  4. 4.
    A. A. Amosov, “Stationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on radiation frequency,” J. Math. Sci. (N.Y.), 164, No. 3, 309–344 (2010).Google Scholar
  5. 5.
    A. A. Amosov, “Nonstationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequency,” J. Math. Sci. (N.Y.), 165, No. 1, 1–41 (2010).Google Scholar
  6. 6.
    A. A. Amosov, “Boundary value problem for the radiation transfer equation with reflection and refraction conditions,” J. Math. Sci. (N.Y.), 191, No. 2, 101–149 (2013).Google Scholar
  7. 7.
    A. A. Amosov, “Boundary value problem for the radiation transfer equation with diffuse reflection and refraction conditions,” J. Math. Sci. (N.Y.), 193, No. 2, 151–176 (2013).Google Scholar
  8. 8.
    A. A. Amosov, “Some properties of boundary value problem for radiative transfer equation with diffuse reflection and refraction conditions,” J. Math. Sci. (N.Y.), 207, No. 2, 118–141 (2015).Google Scholar
  9. 9.
    M. Cessenat, “Théorèmes de trace L p pour des espaces de fonctions de la neutronique,” C. R. Acad. Sci., Paris, Sér. I, 299, 831–834 (1984).MathSciNetMATHGoogle Scholar
  10. 10.
    M. Cessenat, “Théorèmes de trace pour des espaces de fonctions de la neutronique,” C. R. Acad. Sci., Paris, Sér. I, 300, 89–92 (1985).Google Scholar
  11. 11.
    R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 6: Evolution Problems II, Springer, Berlin (2000).CrossRefMATHGoogle Scholar
  12. 12.
    P.-E. Druet, “Weak solutions to a stationary heat equation with nonlocal radiation boundary condition and right-hand side in L p (p ≥ 1),” Math. Methods Appl. Sci., 32, No. 32, 135–166 (2009).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    P.-E. Druet, “Existence for the stationary MHD equations coupled to heat transfer with nonlocal radiation effects,” Czech. Math. J., 59, 791–825 (2009).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    P.-E. Druet, “Existence of weak solution to time-dependent MHD equations coupled to heat transfer with nonlocal radiation boundary conditions,” Nonlinear Anal. Real World Appl., 10, 2914–2936 (2009).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    P.-E. Druet, “Weak solutions to a time-dependent heat equation with nonlocal radiation boundary condition and arbitrary p-summable right-hand side,” Appl. Math., 55, No. 2, 111–149 (2010).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin (1983).CrossRefMATHGoogle Scholar
  17. 17.
    G. V. Grenkin and A. Yu. Chebotarev, “A nonstationary problem of complex heat transfer,” Comput. Math. Math. Phys., 54, No. 11, 1737–1747 (2014).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    C. T. Kelley, “Existence and uniqueness of solutions of nonlinear systems of conductive-radiative heat transfer equations,” Transport Theory Statist. Phys., 25, No. 2, 249–260 (1996).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    A. E. Kovtanyuk and A. Yu. Chebotarev, “Steady-state problem of complex heat transfer,” Comput. Math. Math. Phys., 54, No. 4, 719–726 (2014).MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    A. E. Kovtanyuk and A. Yu. Chebotarev, “Steady-state problem of free convection with radiative heat transfer,” Differ. Uravn., 50, No. 12, 1590 (2014).Google Scholar
  21. 21.
    A. E. Kovtanyuk, A. Yu. Chebotarev, and N. D. Botkin, “Unique solvability of a steady-state complex heat transfer model,” Commun. Nonlinear Sci. Numer. Simul., 20, No. 3, 776–784 (2015).MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, and K.-H. Hoffmann, “The unique solvability of a complex 3D heat transfer problem,” J. Math. Anal. Appl., 409, 808–815 (2014).MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    M. Křižek and L. Liu, “On a comparison principle for a quasilinear elliptic boundary value problem of a nonmonotone type,” Appl. Math., 24, No. 1, 97–107 (1996).MathSciNetMATHGoogle Scholar
  24. 24.
    O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type, Am. Math. Soc., Providence (1968).CrossRefMATHGoogle Scholar
  25. 25.
    M. T. Laitinen, “Asymptotic analysis of conductive-radiative heat transfer,” Asymptot. Anal., 29, 323–342 (2002).MathSciNetMATHGoogle Scholar
  26. 26.
    M. T. Laitinen and T. Tiihonen, “Integro-differential equation modelling heat transfer in conducting, radiating and semitransparent materials,” Math. Methods Appl. Sci., 21, 375–392 (1998).MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    M. Laitinen and T. Tiihonen, “Conductive-radiative heat transfer in grey materials,” Quart. Appl. Math., 2001, 59, 737–768.MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    V. P. Mikhajlov, Partial Differential Equations, Mir Publishers (1978).Google Scholar
  29. 29.
    M. F. Modest, Radiative Heat Transfer, Academic Press, London–New York (2003).MATHGoogle Scholar
  30. 30.
    M. N. Özişik, Radiative Transfer and Interactions with Conduction and Convection, Wiley & Sons, New York (1973).Google Scholar
  31. 31.
    R. Pinnau, “Analysis of optimal boundary control for radiative heat transfer modelled by SP 1 system,” Commun. Math. Sci., 5, No. 4, 951–969 (2007).MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, CRC Press, New York–London (2001).Google Scholar
  33. 33.
    E. M. Sparrow and R. D. Cess, Radiation Heat Transfer, Hemisphere Pub. Corp., New York (1978).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Research University “Moscow Power Engineering Institute”MoscowRussia

Personalised recommendations