Advertisement

Journal of Mathematical Sciences

, Volume 232, Issue 5, pp 622–634 | Cite as

Hochschild Cohomology for Algebras of Semidihedral Type. VII. Algebras with a Small Parameter

  • A. I. GeneralovEmail author
Article
  • 10 Downloads

The Hochschild cohomology groups are computed for algebras of semidihedral type, which are contained in the family SD(2ℬ)2(k, t, c) (from the famous K. Erdmann’s classification) in the case where k = 1. In the calculation, the beforehand construction of the minimal bimodule resolution for algebras from the subfamily under discussion is used.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Generalov, “Hochschild cohomology of algebras of semidihedral type. III. The family SD(2ℬ)2 in characteristic 2,” Zap. Nauchn. Semin. POMI, 400, 133–157 (2012).Google Scholar
  2. 2.
    A. I. Generalov, “Hochschild cohomology of algebras of semidihedral type. VI. The family SD(2ℬ)2 in characteristic different from 2,” Zap. Nauchn. Semin. POMI, 443, 61–77 (2016).Google Scholar
  3. 3.
    K. Erdmann, “Blocks of tame representation type and related algebras,” Lecture Notes Math., 1428, Berlin, Heidelberg (1990).Google Scholar
  4. 4.
    A. I. Generalov, “Hochschild cohomology of algebras of dihedral type, I: the family \( D\left(3\mathcal{K}\right) \) in characteristic 2,” Algebra Analiz, 16, No. 6, 53–122 (2004).Google Scholar
  5. 5.
    A. I. Generalov, “Hochschild cohomology of algebras of semidihedral type, I. Group algebras of semidihedral groups,” Algebra Analiz, 21, No. 2, 1–51 (2009).MathSciNetGoogle Scholar
  6. 6.
    A. I. Generalov, “Hochschild cohomology of algebras of semidihedral type. II. Local algebras,” Zap. Nauchn. Semin. POMI, 386, 144–202 (2011).Google Scholar
  7. 7.
    A. I. Generalov, “Hochschild cohomology of algebras of semidihedral type. IV. Cohomology algebra for the family SD(2ℬ)2(k, t, c) with c = 0,” Zap. Nauchn. Semin. POMI, 413, 45–92 (2013).Google Scholar
  8. 8.
    A. I. Generalov and I. M. Zilberbord, “Hochschild cohomology of algebras of semidihedral type. V. The family \( SD\left(3\mathcal{K}\right) \),” Zap. Nauchn. Semin. POMI, 435, 5–32 (2015).zbMATHGoogle Scholar
  9. 9.
    A. I. Generalov, “Hochschild cohomology of algebras of dihedral type. II. Local algebras,” Zap. Nauchn. Semin. POMI, 375, 92–129 (2010).zbMATHGoogle Scholar
  10. 10.
    A. I. Generalov, “Hochschild cohomology of algebras of dihedral type. III. Local algebras in characteristic 2,” Vestnik St.-Petersburg Univ., Ser. 1, Mat., Mekh., Astron., Issue 1, 28–38 (2010).Google Scholar
  11. 11.
    A. I. Generalov and N. Yu. Kosovskaya, “Hochschild cohomology of algebras of dihedral type. IV. The family D(2ℬ)(k, s, 0),” Zap. Nauchn. Semin. POMI, 423, 67–104 (2014).zbMATHGoogle Scholar
  12. 12.
    A. I. Generalov, I. M. Zilberbord, and D. B. Romanova, “Hochschild cohomology of algebras of dihedral type. V. The family \( D\left(3\mathcal{K}\right) \) in characteristic different from 2,” Zap. Nauchn. Semin. POMI, 430, 74–102 (2014).Google Scholar
  13. 13.
    A. I. Generalov and D. B. Romanova, “Hochschild cohomology of algebras of dihedral type. VI. The family D(2ℬ)(k, s, 1),” Algebra Analiz, 27, No. 6, 89–116 (2009).Google Scholar
  14. 14.
    A. I. Generalov, “Hochschild cohomology of algebras of quaternion type, I: generalized quaternion groups,” Algebra Analiz, 18, No. 1, 55–107 (2006).Google Scholar
  15. 15.
    A. I. Generalov, A. A. Ivanov, and S. O. Ivanov, “Hochschild cohomology of algebras of quaternion type. II. The family Q(2ℬ)1 in characteristic 2,” Zap. Nauchn. Semin. POMI, 349, 53–134 (2007).Google Scholar
  16. 16.
    A. I. Generalov, “Hochschild cohomology of algebras of quaternion type. III. Algebras with a small parameter,” Zap. Nauchn. Semin. POMI, 356, 46–84 (2008).Google Scholar
  17. 17.
    A. A. Ivanov, “Hochschild cohomology of algebras of quaternion type: the family Q(2ℬ)1(k, s, a, c) over a field with characteristic different from 2,” Vestnik St.-Petersburg Univ., Ser. 1, Mat., Mekh., Astron., 1, 63–72 (2010).Google Scholar
  18. 18.
    A. I. Generalov and N. Yu. Kossovskaya, “Hochschild cohomology of the Liu–Schulz algebras,” Algebra Analiz, 18, No. 4, 39–82 (2006).MathSciNetGoogle Scholar
  19. 19.
    A. I. Generalov and M. A. Kachalova, “Bimodule resolution of the Möbius algebra,” Zap. Nauchn. Semin. POMI, 321, 36–66 (2005).zbMATHGoogle Scholar
  20. 20.
    M. A. Kachalova, “Hochschild cohomology for the Möbius algebra,” Zap. Nauchn. Semin. POMI, 330, 173–200 (2006).MathSciNetzbMATHGoogle Scholar
  21. 21.
    M. A. Pustovykh, “Hochschild cohomology ring for the Möbius algebra,” Zap. Nauchn. Semin. POMI, 388, 210–246 (2011).MathSciNetGoogle Scholar
  22. 22.
    Yu. V. Volkov and A. I. Generalov, “Hochschild cohomology for self-injective algebras of tree class D n. I, Zap. Nauchn. Semin. POMI, 343, 121–182 (2007).Google Scholar
  23. 23.
    Yu. V. Volkov, “Hochschild cohomology for self-injective algebras of tree class D n. II,” Zap. Nauchn. Semin. POMI, 365, 63–121 (2009).Google Scholar
  24. 24.
    Yu. V. Volkov and A. I. Generalov, “Hochschild cohomology for self-injective algebras of tree class D n. III,” Zap. Nauchn. Semin. POMI, 386, 100–128 (2011).Google Scholar
  25. 25.
    Yu. V. Volkov, “Hochschild cohomology for non-standard self-injective algebras of tree class D n,” Zap. Nauchn. Semin. POMI, 388, 48–99 (2011).Google Scholar
  26. 26.
    Yu. V. Volkov, “Hochschild cohomology for a family of self-injective algebras of tree class D n,” Algebra Analiz, 23, No. 5, 99–139 (2011).Google Scholar
  27. 27.
    Yu. V. Volkov, “Hochschild cohomology for self-injective algebras of tree class D n. IV,” Zap. Nauchn. Semin. POMI, 388, 100–118 (2011).Google Scholar
  28. 28.
    Yu. V. Volkov, “Hochschild cohomology for self-injective algebras of tree class D n. V,” Zap. Nauchn. Semin. POMI, 394, 140–173 (2011).Google Scholar
  29. 29.
    Yu. V. Volkov, “Hochschild cohomology for self-injective algebras of tree class D n. VI,” Zap. Nauchn. Semin. POMI, 423, 33–56 (2014).Google Scholar
  30. 30.
    M. A. Pustovykh, “Hochschild cohomology ring for self-injective algebras of tree class E 6,” Zap. Nauchn. Semin. POMI, 423, 205–243 (2014).Google Scholar
  31. 31.
    A. I. Generalov, “Hochschild cohomology of the integral group algebra of the dihedral group. I. Even case,” Algebra Analiz, 19, No. 5, 70–123 (2007).Google Scholar
  32. 32.
    A. I. Generalov, “Hochschild cohomology of the integral group algebra of the semidihedral group,” Zap. Nauchn. Semin. POMI, 388, 119–151 (2011).Google Scholar
  33. 33.
    T. Hayami, “Hochschild cohomology ring of the integral group ring of dihedral groups,” Tsukuba J. Math., 31, 99–127 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    T. Hayami, “Hochschild cohomology ring of the integral group ring of the semidihedral 2-groups,” Algebra Colloq., 18, No. 2, 241–258 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Yu. V. Volkov, A. I. Generalov, and S. O. Ivanov, “On construction of bimodule resolutions with the help of Happel’s lemma,” Zap. Nauchn. Semin. POMI, 375, 61–70 (2010).zbMATHGoogle Scholar
  36. 36.
    A. I. Generalov, “Cohomology of algebras of semidihedral type. V,” Zap. Nauchn. Semin. POMI, 394, 194–208 (2011).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.St.Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations