Advertisement

Journal of Mathematical Sciences

, Volume 230, Issue 3, pp 491–501 | Cite as

On the Quasi-Endomorphism Rings of Quasi-Decomposable Torsion-Free Abelian Groups of Rank 4 with a Strongly Indecomposable Quasi-Summand of Rank 2

Article
  • 8 Downloads

Abstract

We obtain a description of quasi-endomorphism rings of torsion-free Abelian groups G of rank 4 that are quasi-decomposable into a direct sum of groups A1 and A2 of rank 1 and a strongly indecomposable group B of rank 2 in the case where the quasi-homomorphism group ℚ ⨂ Hom(B,A2) has rank 2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. M. Arnold, Finite Rank Torsion Free Abelian Groups and Rings, Lect. Notes Math., Vol. 931, Springer, Berlin (1982).Google Scholar
  2. 2.
    R. A. Beaumont and R. S. Pierce, “Torsion free groups of rank two,” Mem. Am. Math. Soc., 38, 1–41 (1961).MathSciNetMATHGoogle Scholar
  3. 3.
    A. V. Cherednikova, “Quasi-endomorphism rings of almost completely decomposable torsion-free Abelian groups of rank 3,” in: Abelian Groups and Modules, Vol. 13-14, Tomsk. Univ., Tomsk (1996), pp. 237–242.Google Scholar
  4. 4.
    A. V. Cherednikova, “Quasi-endomorphism rings of quasi-decomposable torsion-free Abelian groups of rank 3,” in: Abelian Groups and Modules, Vol. 13-14, Tomsk. Univ., Tomsk (1996), pp. 224–236.Google Scholar
  5. 5.
    A. A. Fomin, “Abelian groups with a τ -adic relation,” Algebra Logika, 28, No. 1, 83–104 (1989).Google Scholar
  6. 6.
    L. Fuchs, Infinite Abelian Groups, Vol. 2, Academic Press, New York (1973).MATHGoogle Scholar
  7. 7.
    R. S. Pierce, Associative Algebras, Springer, Berlin (1982).CrossRefMATHGoogle Scholar
  8. 8.
    J. K. Reid, “On the rings of quasi-endomorphism of torsion-free Abelian groups,” Topics in Abelian Groups, Scott, Foresman, Chicago (1963), pp. 51–68.Google Scholar
  9. 9.
    R. Warfield, “Homomorphisms and duality for torsion free groups,” Math. Z., 107, 189–200 (1968).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Kostroma State Technological UniversityKostromaRussia

Personalised recommendations