Advertisement

Journal of Mathematical Sciences

, Volume 230, Issue 3, pp 439–444 | Cite as

On Some Properties of Endomorphism Rings of Abelian Groups

  • V. M. Misyakov
Article

Abstract

Some equivalent conditions under which a group can be (fully) transitive, endotransitive, or weakly transitive are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Carroll and B. Goldsmith, “On transitive and fully transitive Abelian p-groups,” Proc. Royal Irish Acad., 96A, No. 1, 33–41 (1996).MathSciNetMATHGoogle Scholar
  2. 2.
    A. R. Chekhlov, “On a class of endotransitive groups,” Mat. Zametki, 69, No. 6, 944–949 (2001).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    A. R. Chekhlov, “Totally transitive torsion-free groups of finite p-rank,” Algebra Logika, 40, No. 6, 698–715 (2001).Google Scholar
  4. 4.
    A. L. S. Corner, “The independence of Kaplansly’s notions of transitivity and full transitivity,” Quart. J. Math. Oxford, 27, No. 105, 15–20 (1976).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    P. V. Danchev and B. Goldsmith, “On socle-regularity and some notions of transitivity for Abelian p-groups,” J. Commut. Algebra, 3, No. 3, 301–319 (2011).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Yu. B. Dobrusin, “On extensions of partial endomorphisms of torsion-free Abelian groups. II,” in: Abelian Groups and Modules, Izd. Tomsk. Univ., Tomsk (1985), pp. 31–41.Google Scholar
  7. 7.
    Yu. B. Dobrusin, “On extensions of partial endomorphisms of torsion-free Abelian groups,” Abelian Groups Modules, 36–53 (1986).Google Scholar
  8. 8.
    M. Dugas and S. Shelah, “E-transitive groups in L,” in: Abelian Group Theory (Perth, 1987 ), Contemp. Math., Vol. 87, Amer. Math. Soc., Providence (1989), pp. 191–199.Google Scholar
  9. 9.
    S. Files, “On transitive mixed Abelian groups,” in: Abelian Group Theory: Proc. of the Int. Conf. at Colorado Springs, Lect. Notes Pure Appl. Math., Vol. 182, Marcel Dekker, New York (1996), pp. 243–251.Google Scholar
  10. 10.
    S. Files, “Transitivity and full transitivity for nontorsion modules,” J. Algebra, 197, 468–478 (1997).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    S. Files and B. Goldsmith, “Transitive and fully transitive groups,” Proc. Am. Math. Soc., 126, No. 6, 1605–1610 (1998).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    L. Fuchs, Infinite Abelian Groups, Vol. 1, Pure Appl. Math., Vol. 36, Academic Press, New York (1970).Google Scholar
  13. 13.
    L. Fuchs, Infinite Abelian Groups, Vol. 2, Pure Appl. Math., Vol. 36, Academic Press, New York (1973).Google Scholar
  14. 14.
    B. Goldsmith and L. Strungmann, “Torsion-free weakly transitive Abelian groups,” Commun. Algebra, 33, 1177–1191 (2005).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    B. Goldsmith and L. Strungmann, “Some transitivity results for torsion Abelian groups,” Houston J. Math., 33, No. 4, 941–957 (2007).MathSciNetMATHGoogle Scholar
  16. 16.
    P. Griffith, “Transitive and fully transitive primary Abelian groups,” Pacific J. Math., 25, No. 2, 249–254 (1968).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    S. Ya. Grinshpon, “On the structure of fully invariant subgroups of Abelian torsion-free groups,” in: Abelian Groups and Modules, Izd. Tomsk. Univ., Tomsk (1982), pp. 56–92.Google Scholar
  18. 18.
    S. Ya. Grinshpon, “Fully invariant subgroups of Abelian groups and full transitivity,” Fundam. Prikl. Mat., 8, No. 2, 407–472 (2002).Google Scholar
  19. 19.
    S. Ya. Grinshpon and V. M. Misyakov, “Fully transitive Abelian groups,” in: Abelian Groups Modules, 12–27 (1986).Google Scholar
  20. 20.
    S. Ya. Grinshpon and V. M. Misyakov, “Full transitivity of direct products of Abelian groups,” Abelian Groups Modules, 23–30 (1991).Google Scholar
  21. 21.
    J. Hausen, “E-transitive torsion-free Abelian groups,” J. Algebra, 107, 17–27 (1987).MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    G. Hennecke and L. Str¨ungmann, “Transitivity and full transitivity for p-local modules,” Arch. Math., 74, 321–329 (2000).Google Scholar
  23. 23.
    P. Hill, “On transitive and fully transitive primary groups,” Proc. Am. Math. Soc., 22, No. 2, 414–417 (1969).MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    I. Kaplansky, Infinite Abelian Groups, Univ. of Michigan Press, Ann Arbor (1954).Google Scholar
  25. 25.
    P. A. Krylov, “On fully invariant subgroups of Abelian torsion-free groups,” in: Collected Works of Postgraduates on Mathematics, Izd. Tomsk. Univ., Tomsk (1973), pp. 15–20.Google Scholar
  26. 26.
    P. A. Krylov, “Some examples of quasi-pure injective and transitive Abelian groups without torsion,” in: Abelian Groups and Modules, Izd. Tomsk. Univ., Tomsk (1988), pp. 81–99.Google Scholar
  27. 27.
    P. A. Krylov, “Fully transitive torsion-free Abelian groups,” Algebra Logika, 29, No. 5, 549–560 (1990).Google Scholar
  28. 28.
    P. A. Krylov, A. V. Mikhalev, and A. A. Tuganbaev, Endomorphism Rings of Abelian Groups, Kluwer Academic, Dordrecht (2003).CrossRefMATHGoogle Scholar
  29. 29.
    C. Meehan and L. Strungmann, “Rational rings related to weakly transitive torsion-free groups,” J. Algebra Its Appl., 8, No. 5, 723–732 (2009).MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    V. M. Misyakov, “On complete transitivity of reduced Abelian groups,” Abelian Groups Modules, 134–156 (1994).Google Scholar
  31. 31.
    A. Paras and L. Strungmann, “Fully transitive p-groups with finite first Ulm subgroup,” Proc. Am. Math. Soc., 131, 371–377 (2003).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tomsk State UniversityTomskRussia

Personalised recommendations