Journal of Mathematical Sciences

, Volume 230, Issue 3, pp 398–410 | Cite as

On Finite Nonsolvable 5-Primary Groups with Disconnected Gruenberg–Kegel Graph Such that |π(G/F(G))| ≤ 4

  • V. A. Kolpakova
  • A. S. Kondrat’ev


This paper describes the chief factors of the commutator subgroups of finite nonsolvable groups G with disconnected Gruenberg–Kegel graph having exactly 5 vertices in the case where G/F(G) is an almost simple n-primary group for n ≤ 4.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Aschbacher, Finite Group Theory, Cambridge Univ. Press, Cambridge (1986).Google Scholar
  2. 2.
    V. A. Belonogov, Representations and Characters in the Theory of Finite Groups [in Russian], UrO AN USSR, Sverdlovsk (1990).Google Scholar
  3. 3.
    J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford (1985).Google Scholar
  4. 4.
    C. W. Curtis and I. Reiner, The Representation Theory of Finite Groups and Associative Algebras, Wiley, New York (1962).MATHGoogle Scholar
  5. 5.
    GAP — Groups, Algorithms, and Programming, Ver. 4.4.12 (2008),
  6. 6.
    G. Higman, Odd Characterizations of Finite Simple Groups: Lecture Notes, Univ. Michigan, Michigan (1968).Google Scholar
  7. 7.
    B. Huppert and N. Blackburn, Finite Groups, Vol. II, Springer, Berlin (1982).Google Scholar
  8. 8.
    C. Jansen, K. Lux, R. Parker, and R. Wilson, An Atlas of Brauer Characters, Clarendon Press, Oxford (1995).MATHGoogle Scholar
  9. 9.
    I. V. Khramtsov, “On finite nonsimple 4-primary groups,” Sib. El. Math. Rep., 11, 695–708 (2014).MathSciNetMATHGoogle Scholar
  10. 10.
    V. A. Kolpakova and A. S. Kondrat’ev, “Finite almost simple 6-primary groups and their Gruenberg–Kegel graphs,” Algebra and Applications: Proc. Int. Conf. Dedicated to the 100th Anniversary of L. A. Kaluzhnin [in Russian], KBGU, Nal’chik (2014), pp. 63–66.Google Scholar
  11. 11.
    A. S. Kondrat’ev, “Prime graph components of finite simple groups,” Math. USSR Sb., 67, No. 1, 235–247 (1990).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    A. S. Kondrat’ev, “Finite linear groups of small degree. II,” Commun. Algebra, 29, No. 9, 4103–4123 (2001).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    A. S. Kondrat’ev, “Finite almost simple 5-primary groups and their Gruenberg–Kegel graphs,” Sib. El. Mat. Izv., 11, 634–674 (2014).MathSciNetMATHGoogle Scholar
  14. 14.
    A. S. Kondrat’ev and I. V. Khramtsov, “On finite threeprimary groups,” Tr. IMM UrO RAN, 16, No. 3, 150–158 (2010).MATHGoogle Scholar
  15. 15.
    A. S. Kondrat’ev and I. V. Khramtsov, “On finite nonsimple threeprimary groups with disconnected prime graph,” Sib. El. Mat. Izv., 9, 472–477 (2012).MATHGoogle Scholar
  16. 16.
    A. S. Kondrat’ev and I. V. Khramtsov, “On finite tetraprimary groups,” Proc. Steklov Inst. Math., 279, Suppl. 1, S43–S61 (2012).CrossRefMATHGoogle Scholar
  17. 17.
    M. S. Lucido, “Prime graph components of finite almost simple groups,” Rend. Sem. Mat. Univ. Padova, 102, 1–22 (1999); addendum, Rend. Sem. Mat. Univ. Padova, 107, 189–190 (2002).Google Scholar
  18. 18.
    V. D. Mazurov, “Characterization of finite groups by sets of orders of their elements,” Algebra Logic, 36, No. 1, 23–32 (1997).Google Scholar
  19. 19.
    W. A. Simpson and J. S. Frame, “The character tables for SL(3, q), SU(3, q 2), PSL(3, q), PSU(3, q 2),” Can. J. Math., 25, No. 3, 486–494 (1973).Google Scholar
  20. 20.
    W. B. Stewart, “Groups having strongly self-centralizing 3-centralizers,” Proc. London Math. Soc., 426, No. 4, 653–680 (1973).MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    J. S. Williams, “Prime graph components of finite groups,” J. Algebra, 69, No. 2, 487–513 (1981).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.N. N. Krasovskii Institute of Mathematics and Mechanics UB RASEkaterinburgRussia

Personalised recommendations