Advertisement

Journal of Mathematical Sciences

, Volume 230, Issue 3, pp 377–388 | Cite as

Normal Determinability of Torsion-Free Abelian Groups by Their Holomorphs

  • S. Ya. Grinshpon
  • I. E. Grinshpon
Article

Abstract

We investigate torsion-free Abelian groups that are decomposable into direct sums or direct products of homogeneous groups normally defined by their holomorphs. Properties of normal Abelian subgroups of holomorphs of torsion-free Abelian groups are also studied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Kh. Bekker, “On holomorphs of Abelian groups,” Sib. Mat. Zh., 5, No. 6, 1228–1238 (1964).MathSciNetGoogle Scholar
  2. 2.
    I. Kh. Bekker, “On holomorphs of nonreduced Abelian groups,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 8, 3–8 (1968).Google Scholar
  3. 3.
    I. Kh. Bekker, “On holomorphs of torsion-free Abelian groups,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 3, 3–13 (1974).Google Scholar
  4. 4.
    I. Kh. Bekker, “Abelian groups with isomorphic holomorphs,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 3, 97–99 (1975).Google Scholar
  5. 5.
    I. Kh. Bekker, “Abelian holomorphic groups,” in: All-Siberian Readings on Mathematics and Mechanics. Select. Rep. Vol. 1. Mathematics (1997), pp. 43–47.Google Scholar
  6. 6.
    I. Kh. Bekker and S. Ya. Grinshpon, “Almost holomorphically isomorphic primary Abelian groups,” in: Groups and Modules (1976), pp. 90–103.Google Scholar
  7. 7.
    L. Fuchs, Infinite Abelian Groups, Vol. 1 [Russian translation], Mir, Moscow (1974).Google Scholar
  8. 8.
    L. Fuchs, Infinite Abelian Groups, Vol. 2 [Russian translation], Mir, Moscow (1977).Google Scholar
  9. 9.
    I. E. Grinshpon, “Normal subgroups of holomorphs of Abelian groups and almost holomorphic isomorphism,” Fundam. Prikl. Mat., 13, No. 3, 9–16 (2007).MathSciNetGoogle Scholar
  10. 10.
    S. Ya. Grinshpon, “Almost holomorphically isomorphic Abelian groups,” Tr. TGU, 220, No. 3, 78–84 (1975).Google Scholar
  11. 11.
    G. A. Miller, “On the multiple holomorph of a group,” Math. Ann., 66, 133–142 (1908).MathSciNetCrossRefGoogle Scholar
  12. 12.
    W. H. Mills, “Multiple holomorphs of finitely generated Abelian groups,” Trans. Am. Math. Soc., 71, No. 3, 379–392 (1950).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    W. H. Mills, “On the non-isomorphism of certain holomorphs,” Trans. Am. Math. Soc., 74, No. 3, 428–443 (1953).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tomsk State UniversityTomskRussia
  2. 2.Tomsk State University of Control Systems and RadioelectronicsTomskRussia

Personalised recommendations