Advertisement

Journal of Mathematical Sciences

, Volume 227, Issue 4, pp 402–406 | Cite as

Fast Matrix Multiplication by Using Color Algebras

  • R. R. Aidagulov
  • M. V. Shamolin
Article
  • 71 Downloads

Abstract

A method for calculation of matrix product based on color algebras is proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. R. Aidagulov and M. V. Shamolin, “On a modification of the Conway algorithm,” Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., No. 3, 53–55 (2005).Google Scholar
  2. 2.
    R. R. Aidagulov and M. V. Shamolin, “Groups of colors,” Sovr. Mat. Prilozh., 62, 15–27 (2009).zbMATHGoogle Scholar
  3. 3.
    R. R. Aidagulov and M. V. Shamolin, “Integration formulas of order 10 and higher,” Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., No. 4, 3–7 (2010).Google Scholar
  4. 4.
    D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progressions,” J. Symbol. Comput., 9, No. 3, 251–280 (1990).CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    J. Demmel, I. Dumitriu, O. Holtz, R. Kleinberg, “Fast matrix multiplication is stable,” http://arxiv.org/abs/math/0603207
  6. 6.
    F. Le Gall, “Powers of tensors and fast matrix multiplication,” http://simons.berkeley.edu/talks/francois-le-gall-2014-11-12
  7. 7.
    P. Naudin and C. Quitte, Algoritmique Algébrique, Masson, Paris (1992).zbMATHGoogle Scholar
  8. 8.
    V. Strassen, “Gaussian elimination is not optimal,” Numer. Math., 13, No. 4, 354–356 (1969).CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    D. V. Zhdanovich, “Complexity exponent of matrix multiplication,” Fundam. Prikl. Mat., 17, No. 2, 107–166 (2011/2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of Mechanics of the M. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations