Advertisement

Journal of Mathematical Sciences

, Volume 223, Issue 6, pp 756–762 | Cite as

On Two Geometric Problems Arising in Mathematical Physics

  • A. Sergeev
Article
  • 29 Downloads

Abstract

We consider two mathematical problems that can be ascribed to the category pointed out in the title. The first one relates to geometric quantization and deals with the twistor approach to the quantization of smooth strings. The second one concerns the adiabatic limit in the Ginzburg–Landau and Seiberg–Witten equations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Bowick and A. Lahiri, “The Ricci curvature of Diff S 1 /SL(2,ℝ),” J. Math. Phys., 29, 1979–1981 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    M. J. Bowick and S. G. Rajeev, “The holomorphic geometry of closed bosonic string theory and Diff S 1 /S 1,” Nucl. Phys. B, 293, 348–384 (1987).MathSciNetCrossRefGoogle Scholar
  3. 3.
    A. V. Domrin, “Analogues of Ginzburg–Landau vortices,” Theor. Math. Phys., 124, No. 1, 872–886 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    V. Guillemin and S. Sternberg, Geometric Asymptotics, Amer. Math. Soc., Providence (1977).CrossRefzbMATHGoogle Scholar
  5. 5.
    A. Jaffe and C. H. Taubes, Vortices and Monopoles, Birkhäuser, Boston (1980).zbMATHGoogle Scholar
  6. 6.
    A. A. Kirillov, “Kähler structure on K-orbits of the diffeomorphism group of the circle,” Funct. Anal. Appl., 21, 122–125 (1987).CrossRefzbMATHGoogle Scholar
  7. 7.
    A. A. Kirillov, “Geometric quantization,” in: Dynamical Systems, IV, Encycl. Math. Sci., Vol. 4., Springer, Berlin (1990), pp. 137–172.Google Scholar
  8. 8.
    A. A. Kirillov and D. V. Juriev, “Kähler geometry of the infinite-dimensional homogeneous space M = Diff+(S 1)/Rot(S 1),” Funct. Anal. Appl., 21, 284–294 (1987).CrossRefGoogle Scholar
  9. 9.
    E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Pt. 2, Theory of the Condensed State, Pergamon Press, London (1980).Google Scholar
  10. 10.
    N. S. Manton, “A remark on the scattering of BPS monopoles,” Phys. Lett. B, 110, 54–56 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    J. W. Morgan, The Seiberg–Witten Equations and Applications to the Topology of Smooth Four-Manifolds, Princeton Univ. Press, Princeton (1996).zbMATHGoogle Scholar
  12. 12.
    R. V. Palvelev, “Scattering of vortices in the Abelian Higgs model,” Theor. Math. Phys., 156, No. 1, 1028–1040 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    R. V. Palvelev, “Justification of the adiabatic principle in the Abelian Higgs model,” Trans. Moscow Math. Soc., 72, 219–244 (2011).MathSciNetCrossRefGoogle Scholar
  14. 14.
    R. V. Palvelev and A. G. Sergeev, “Justification of the adiabatic principle for hyperbolic Ginzburg–Landau equations,” Proc. Steklov Inst. Math., 277, 191–205 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    A. Pressley and G. Segal, Loop Groups, Clarendon Press, Oxford (1986).zbMATHGoogle Scholar
  16. 16.
    D. Salamon, Spin Geometry and Seiberg–Witten Invariants, Preprint, Univ. Warwick (1996).Google Scholar
  17. 17.
    N. Seiberg and E. Witten, “Electromagnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang–Mills theory,” Nucl. Phys. B, 426, 19–52 (1994).CrossRefzbMATHGoogle Scholar
  18. 18.
    N. Seiberg and E. Witten, “Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric Yang–Mills theory,” Nucl. Phys. B, 426, 581–640 (1994).CrossRefzbMATHGoogle Scholar
  19. 19.
    A. G. Sergeev, Vortices and Seiberg–Witten Equations, Nagoya Univ., Nagoya (2002).Google Scholar
  20. 20.
    A. G. Sergeev, Geometric Quantization of Loop Spaces [in Russian], Steklov Inst., Moscow (2009).Google Scholar
  21. 21.
    A. Sergeev, Kähler Geometry of Loop Spaces, World Scientific, Singapore (2010).CrossRefzbMATHGoogle Scholar
  22. 22.
    A. G. Sergeev and S. V. Chechin, “Scattering of slowly moving vortices in the Abelian (2 + 1)-dimensional Higgs model,” Theor. Math. Phys., 85, No. 3, 1289–1299 (1990).MathSciNetCrossRefGoogle Scholar
  23. 23.
    J.-M. Souriau, Structure des Systémes Dynamiques, Dunod, Paris (1970).zbMATHGoogle Scholar
  24. 24.
    J. Sniatycki, Geometric Quantization and Quantum Mechanics, Springer, Berlin (1980).CrossRefzbMATHGoogle Scholar
  25. 25.
    C. H. Taubes, “Arbitrary N-vortex solutions to the first-order Ginzburg–Landau equations,” Commun. Math. Phys., 72, 277–292 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    C. H. Taubes, “SW ⟹ Gr: From the Seiberg–Witten equations to pseudo-holomorphic curves,” J. Am. Math. Soc., 9, 845–918 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    C. H. Taubes, “Gr ⟹ SW: From pseudo-holomorphic curves to Seiberg–Witten solutions,” J. Differ. Geom., 51, 203–334 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    C. H. Taubes, “Gr = SW: Counting curves and connections,” J. Differ. Geom., 52, 453–609 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    G. M. Tuynman, Geometric Quantization, CWI Syllabus, Amsterdam (1985).zbMATHGoogle Scholar
  30. 30.
    N. M. J. Woodhouse, Geometric Quantization, Clarendon Press, Oxford (1992).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteMoscowRussia

Personalised recommendations