Advertisement

Journal of Mathematical Sciences

, Volume 222, Issue 4, pp 404–416 | Cite as

Hochschild Cohomology for Algebras of Semidihedral Type. VI. The Family \( SD{\left(2\mathrm{\mathcal{B}}\right)}_2 \) in Characteristic Different from 2

  • A. I. Generalov
Article

The Hochschild cohomology groups for algebras of semidihedral type that lie in the family \( SD{\left(2\mathrm{\mathcal{B}}\right)}_2 \) (in the famous K.Erdmann’s classification) over an algebraically closed field with characteristic different from two are computed. The calculation, relies upon the minimal projective bimodule resolution for algebras from the above family that was constructed in the previous author’s paper.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Erdmann, “Blocks of tame representation type and related algebras,” Lect. Notes Math., 1428 (1990).Google Scholar
  2. 2.
    A. I. Generalov, “Hochschild cohomology of algebras of semidihedral type, III. The family \( SD{\left(2\mathrm{\mathcal{B}}\right)}_2 \) in characteristic 2,” Zap. Nauchn. Semin. POMI, 400, 133–157 (2012).Google Scholar
  3. 3.
    A. I. Generalov, “Hochschild cohomology of algebras of semidihedral type. IV. The cohomology algebra for the family \( SD{\left(2\mathrm{\mathcal{B}}\right)}_2\left(k,\ t,\ c\right) \) in the case c = 0,” Zap. Nauchn. Semin. POMI, 413, 45–92 (2013).Google Scholar
  4. 4.
    A. I. Generalov, “Hochschild cohomology of algebras of dihedral type, I: the family \( D\left(3\mathcal{K}\right) \) in characteristic 2,” Algebra Analiz, 16, No. 6, 53–122 (2004).Google Scholar
  5. 5.
    A. I. Generalov, “Hochschild cohomology of algebras of dihedral type. II. Local algebras,” Zap. Nauchn. Semin. POMI, 375, 92–129 (2010).zbMATHGoogle Scholar
  6. 6.
    A. I. Generalov, “Hochschild cohomology of algebras of dihedral type. III. Local algebras in characteristic 2,” Vestn. Sankt Petersburg Univ., Ser.1, 1, 28–38 (2010).Google Scholar
  7. 7.
    A. I. Generalov and N. Yu. Kosovskaya, “Hochschild cohomology of algebras of dihedral type. IV. The family \( D\left(2\mathrm{\mathcal{B}}\right)\left(k,\ s,0\right) \),” Zap. Nauchn. Semin. POMI, 423, 67–104 (2014).Google Scholar
  8. 8.
    A. I. Generalov, I. M. Zilberbord, and D. B. Romanova, ‘Hochschild cohomology of algebras of dihedral type. V. The family \( D\left(3\mathcal{K}\right) \) in characteristic different from 2,” Zap. Nauchn. Semin. POMI, 430, 74–102 (2014).Google Scholar
  9. 9.
    A. I. Generalov and D. B. Romanova, “Hochschild cohomology of algebras of dihedral type. VI. The family \( D\left(2\mathrm{\mathcal{B}}\right)\left(k,\ s,1\right) \),” Algebra Analiz, 27, No. 6, 89–116 (2015).Google Scholar
  10. 10.
    A. I. Generalov, “Hochschild cohomology of algebras of semidihedral type, I. Group algebras of semidihedral groups,” Algebra Analiz, 21, No. 2, 1–51 (2009).MathSciNetGoogle Scholar
  11. 11.
    A. I. Generalov, “Hochschild cohomology of algebras of semidihedral type. II. Local algebras,” Zap. Nauchn. Semin. POMI, 386, 144–202 (2011).Google Scholar
  12. 12.
    A. I. Generalov and I. M. Zilberbord, “Hochschild cohomology of algebras of semidihedral type. V. The family \( SD\left(3\mathcal{K}\right) \),” Zap. Nauchn. Semin. POMI, 435, 5–32 (2015).zbMATHGoogle Scholar
  13. 13.
    A. I. Generalov, “Hochschild cohomology of algebras of quaternion type, I: generalized quaternion groups,” Algebra Analiz, 18, No. 1, 55–107 (2006).Google Scholar
  14. 14.
    A. I. Generalov, A. A. Ivanov, and S. O. Ivanov, “Hochschild cohomology of algebras of quaternion type. II. The family \( Q{\left(2\mathrm{\mathcal{B}}\right)}_1 \) in characteristic 2,” Zap. Nauchn. Semin. POMI, 349, 53–134 (2007).Google Scholar
  15. 15.
    A. I. Generalov, “Hochschild cohomology of algebras of quaternion type. III. Algebras with a small parameter,” Zap. Nauchn. Semin. POMI, 356, 46–84 (2008).Google Scholar
  16. 16.
    A. A. Ivanov, “Hochschild cohomology of algebras of quaternion type: the family \( Q{\left(2\mathrm{\mathcal{B}}\right)}_1\left(k,\ s,\ a,\ c\right) \) over a field with characteristic different from 2,” Vestn. Sankt Petersburg Univ., Ser.1, 1, 63–72 (2010).Google Scholar
  17. 17.
    A. I. Generalov and N. Yu. Kossovskaya, “Hochschild cohomology of the Liu–Schulz algebras,” Algebra Analiz, 18, No. 4, 39–82 (2006).Google Scholar
  18. 18.
    K. Erdmann, Th. Holm, and N. Snashall, “Twisted bimodules and Hochschild cohomology for self-injective algebras of class A n, II,” Algebras Repr.Theory, 5, 457–482 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    A. I. Generalov and M. A. Kachalova, “Bimodule resolution of Möbius algebra,” Zap. Nauchn. Semin. POMI, 321, 36–66 (2005).zbMATHGoogle Scholar
  20. 20.
    M. A. Kachalova, “Hochschild cohomology for Möbius algebra,” Zap. Nauchn. Semin. POMI, 330, 173–200 (2006).MathSciNetzbMATHGoogle Scholar
  21. 21.
    M. A. Pustovykh, “Hochschild cohomology ring for Möbius algebra,” Zap. Nauchn. Semin. POMI, 388, 210–246 (2011).MathSciNetGoogle Scholar
  22. 22.
    Yu. V. Volkov and A. I. Generalov, “Hochschild cohomology for self-injective algebras of tree class D n. I,” Zap. Nauchn. Semin. POMI, 343, 121–182 (2007).Google Scholar
  23. 23.
    Yu. V. Volkov, “Hochschild cohomology for self-injective algebras of tree class D n. II,” Zap. Nauchn. Semin. POMI, 365, 63–121 (2009).Google Scholar
  24. 24.
    Yu. V. Volkov and A. I. Generalov, “Hochschild cohomology for self-injective algebras of tree class D n. III,” Zap. Nauchn. Semin. POMI, 386, 100–128 (2011).Google Scholar
  25. 25.
    Yu. V. Volkov, “Hochschild cohomology for non-standard self-injective algebras of tree class D n,” Zap. Nauchn. Semin. POMI, 388, 48–99 (2011).Google Scholar
  26. 26.
    Yu. V. Volkov, “Hochschild cohomology for a family of self-injective algebras of tree class D n,” Algebra Analiz, 23, No. 5, 99–139 (2011).Google Scholar
  27. 27.
    Yu. V. Volkov, “Hochschild cohomology for self-injective algebras of tree class D n. IV,” Zap. Nauchn. Semin. POMI, 388, 100–118 (2011).Google Scholar
  28. 28.
    Yu. V. Volkov, “Hochschild cohomology for self-injective algebras of tree class D n. V,” Zap. Nauchn. Semin. POMI, 394, 140–173 (2011).Google Scholar
  29. 29.
    Yu. V. Volkov, “Hochschild cohomology for self-injective algebras of tree class D n. VI,” Zap. Nauchn. Semin. POMI, 423, 33–56 (2014).Google Scholar
  30. 30.
    A. I. Generalov, “Hochschild cohomology of the integral group algebra of the dihedral group. I. Even case,” Algebra Analiz, 19, No. 5, 70–123 (2007).Google Scholar
  31. 31.
    A. I. Generalov, “Hochschild cohomology of the integral group algebra of the semidihedral group,” Zap. Nauchn. Semin. POMI, 388, 119–151 (2011).Google Scholar
  32. 32.
    T. Hayami, “Hochschild cohomology ring of the integral group ring of dihedral groups,” Tsukuba J. Math., 31, 99–127 (2007).MathSciNetzbMATHGoogle Scholar
  33. 33.
    T. Hayami, “Hochschild cohomology ring of the integral group ring of the semidihedral 2-groups,” Algebra Colloq., 18, No. 2, 241–258 (2011).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.St.Petersburg State UniversitySt.PetersburgRussia

Personalised recommendations