Journal of Mathematical Sciences

, Volume 221, Issue 6, pp 840–848 | Cite as

Index Set of Linear Orderings that are Autostable Relative to Strong Constructivizations

  • S. S. Goncharov
  • N. A. Bazhenov
  • M. I. Marchuk
Article
  • 11 Downloads

We prove that a computable ordinal α is autostable relative to strong constructivizations if and only if α < ωω+1. We obtain an estimate of the algorithmic complexity for the class of strongly constructivizable linear orderings that are autostable relative to strong constructivizations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. S. Goncharov and J. F. Knight, “Computable structure and non-structure theorems” [in Russian], Algebra Logika 41, No. 6. 639–681 (2002); English transl.: Algebra Logic 41, No. 6. 351–373 (2002).Google Scholar
  2. 2.
    S. S. Goncharov and Yu. L. Ershov, Constructive Models [in Russian], Nauchnaya Kniga, Novosibirsk (1999); English transl.: Kluwer Academic/Plenum Press, New York (2002).Google Scholar
  3. 3.
    C. J. Ash and J. F. Khight, Computable Structures and the Hyperarithmetical Hierarchy, Elsevier, Amsterdam (2000).MATHGoogle Scholar
  4. 4.
    A. T. Nurtazin, Computable Classes and Algebraic Criteria of Autostability [in Russian], Thesis, Alma-Ata (1974).Google Scholar
  5. 5.
    E. B. Fokina “Index sets of decidable models” [in Russian], Sib. Mat. Zh. 48, No. 5, 1167–1179 (2007); English transl.: Sib. Math. J. 48, No. 5, 939–948 (2007).Google Scholar
  6. 6.
    S. S. Goncharov and M. I. Marchuk, “Index sets of constructive models of bounded signature that are autostable relative to strong constructivizations” [in Russian], Algebra Logika 54, No. 2, 163–192 (2015); English transl.: Algebra Logic 54, No. 2, 108–126 (2015).Google Scholar
  7. 7.
    S. S. Goncharov and M. I. Marchuk, “Index sets of constructive models of finite and graph signatures that are autostable relative to strong constructivizations” [in Russian], Algebra Logika 54, No. 6, 663–679 (2015); English transl.: Algebra Logic 54, No. 6, 428–439 (2016).Google Scholar
  8. 8.
    S. S. Goncharov, N. A. Bazhenov, and M. I. Marchuk, “The index set of Boolean algebras autostable relative to strong constructivizations” [in Russian], Sib. Mat. Zh. 56, No. 3, 498–512 (2015); English transl.: Sib. Math. J. 56, No. 3, 393–404 (2015).Google Scholar
  9. 9.
    S. S. Goncharov and M. I. Marchuk, “Index sets of autostable relative to strong constructivizations constructive models” [in Russian], Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform. 13, No. 4, 43–67 (2013); English transl.: J. Math. Sci. 205, No. 3, 368–388 (2015).Google Scholar
  10. 10.
    S. S. Goncharov and M. I. Marchuk, “Index sets of constructive models of nontrivial signature autostable relative to strong constructivizations” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 461, No. 2, 140–142 (2015); English transl.: Dokl. Math. 91, No. 2, 158–159 (2015).Google Scholar
  11. 11.
    S. S. Goncharov, N. A. Bazhenov, and M. I. Marchuk, “Index sets of autostable relative to strong constructivizations constructive models for familiar classes” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 464, No. 1, 12–14 (2015); English transl.: Dokl. Math. 92, No. 2, 525–527 (2015).Google Scholar
  12. 12.
    J. G. Rosenstein, Linear Orderings, Academic Press, New York (1982).MATHGoogle Scholar
  13. 13.
    R. G. Downey, “Computability theory and linear orderings” In: Handbook of Recursive Mathematics. Vol. 2, pp. 823–976, Elsevier, Amsterdam (1998).Google Scholar
  14. 14.
    C. C. Chang and H. K. Keisler, Model Theory, North Holland, Amsterdam (1990).MATHGoogle Scholar
  15. 15.
    A. T. Nurtazin, “Strong and weak constructivization and computable families” [in Russian], Algebra Logika 13, No. 3. 311–323 (1974); English transl.: Algebra Logic 13, No. 3. 177–184 (1974);Google Scholar
  16. 16.
    H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill Publ. Company, Maidenhead, Berksh. (1967)Google Scholar
  17. 17.
    C. J. Ash, “Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees,” Trans. Am. Math. Soc 298, No. 2, 497–514 (1986).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    C. J. Ash and J. F. Knight, “Pairs of recursive structures,” Ann. Pure Appl. Logic 46, No. 3, 211–234 (1990).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    N. G. Khisamiev, Constructive Ordinal is Strongly Constructivizable [in Russian], Dep. VINITI. No. 1604-79, Moscow (1978).Google Scholar
  20. 20.
    B. Khoussainov and M. Minnes, “Three lectures on automatic structures,” Lect. Notes Log. 35, 132–176 (2010).MathSciNetMATHGoogle Scholar
  21. 21.
    C. Delhommé, “Automaticity of ordinals and of homogeneous graphs” [in French], C. R., Math., Acad. Sci. Paris 339, No. 1, 5–10 (2004).Google Scholar
  22. 22.
    A. A. Revenko, “Autostability of automatic presentations of well orders and low rank linear orders” [in Russian], Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform. 8, No. 4, 78–88 (2008);Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • S. S. Goncharov
    • 1
    • 2
  • N. A. Bazhenov
    • 1
    • 2
  • M. I. Marchuk
    • 1
  1. 1.Sobolev Institute of Mathematics SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations