Journal of Mathematical Sciences

, Volume 219, Issue 2, pp 321–335 | Cite as

Integrable Systems with Variable Dissipation on the Tangent Bundle of a Sphere

Article
  • 13 Downloads

Many problems of multidimensional dynamics involve systems for which the spaces of states are spheres of finite dimension and the spaces of phases are the tangent bundles of such spheres. We study conservative systems and present nonconservative force fields such that the systems involving such forces possess a complete collection of first integrals that are expressed through a finite combination of elementary functions and, in general, are transcendental functions of their variables. Bibliography: 32 titles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Shamolin, “On the problem of the motion of a body in a resistant medium” [in Russian], Vestn. Mosk. Univ., Ser. I No. 1, 52–58 (1992); English transl.: Mosc. Univ. Math. Bull. 47, No. 1, 4–10 (1992).Google Scholar
  2. 2.
    M. V. Shamolin, Methods of Analysis of Dynamical Systems with Variable Dissipation in Dynamics of Solid Body [in Russian], Ekzamen, Moscow (2007).MATHGoogle Scholar
  3. 3.
    M. V. Shamolin, “On the integrable case in the 3D dynamics of a solid interacting with a medium” [in Russian], Izv. Akad. Nauk, Mekh. Tverd. Tela No. 2, 65–68 (1997); English transl.: Mech. Solid. 32, No. 2, 55–58 (1997).Google Scholar
  4. 4.
    M. V. Shamolin, “New integrable, in the sense of Jacobi, cases in the dynamics of a rigid body interacting with a medium” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 364, No. 5, 627–629 (1999); English transl.: Dokl. Phys. 44, No. 2, 110–113 (1999).Google Scholar
  5. 5.
    M. V. Shamolin, “The case of complete integrability in three-dimensional dynamics of a rigid body interacting with a medium with the inclusion of rotary derivatives of the force moment with respect to the angular velocity” [in Russian], Dokl. Akad. Nauk 403, No. 4, 482–485 (2005); English transl.: Dokl. Phys. 50, No. 8, 414–418 (2005).Google Scholar
  6. 6.
    M. V. Shamolin, “Comparison of Jacobi integrable cases of plane and spatial motion of a body in a medium at streamlining” [in Russian], Prikl. Mat. Mekh. 69, No. 6, 1003–1010 (2005); English transl.: J. Appl. Math. Mech. 69, No. 6, 900–906 (2005).Google Scholar
  7. 7.
    M. V. Shamolin, “A case of complete integrability in the dynamics on the tangent bundle of a two-dimensional sphere” [in Russian], Usp. Mat. Nauk 62, No. 5, 169–170 (2007); English transl.: Russian Math. Surv. 62, No. 5, 1009–1011 (2007).Google Scholar
  8. 8.
    M. V. Shamolin, “Dynamical systems with variable dissipation: Approaches, methods, and applications” [in Russian], Fundam. Prikl. Mat. 14, No. 3, 3–237 (2008); English transl.: J. Math. Sci., New York 162, No. 6, 741–908 (2009).Google Scholar
  9. 9.
    M. V. Shamolin, “New integrable cases in dynamics of a medium-interacting body with allowance for dependence of resistance force moment on angular velocity” [in Russian], Prikl. Mat. Mekh. 72, No. 2, 273–287 (2008); English transl.: J. Appl. Math. Mech. 72, No. 2, 169–179 (2008).Google Scholar
  10. 10.
    M. V. Shamolin, “New cases of integrability in the spatial dynamics of a rigid body” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 431, No. 3, 339–343 (2010); English transl.: Dokl. Phys. 55, No. 3, 155–159 (2010).Google Scholar
  11. 11.
    M. V. Shamolin, “A new case of integrability in spatial dynamics of a rigid solid interacting with a medium under assumption of linear damping” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 442, No. 4, 479–481 (2012); English transl.: Dokl. Phys. 57, No. 2, 78–80 (2012).Google Scholar
  12. 12.
    M. V. Shamolin, “Complete list of first integrals for dynamic equations of motion of a solid body in a resisting medium with consideration of linear damping” [in Russian], Vestn. Mosk. Univ., Ser. I No. 4, 44–47 (2012); English transl.: Mosc. Univ. Mech. Bull. 67, No. 4, 92–95 (2012).Google Scholar
  13. 13.
    V. V. Trofimov and M. V. Shamolin, “Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems” [in Russian], Fundam. Prikl. Mat. 16, No. 4, 3–229 (2010); English transl.: J. Math. Sci., New York 180, No. 4, (2012), 365–530 (2012).Google Scholar
  14. 14.
    M. V. Shamolin, “Integrability according to Jacobi in the problem of motion of a fourdimensional solid in a resistant medium” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 375, No. 3, 343–346 (2000); English transl.: Dokl. Phys. 45, No. 11, 632–634 (2000).Google Scholar
  15. 15.
    M. V. Shamolin, “An integrable case of dynamical equations on so(4) ×4” [in Russian], Usp. Mat. Nauk 60, No. 6, 233–234 (2005); Russ. Math. Surv. 60, No. 6, 1245–1246 (2005).Google Scholar
  16. 16.
    M. V. Shamolin, “Classification of complete integrability cases in four-dimensional symmetric rigid-body dynamics in a nonconservative field” [in Russian], Sovrem. Mat. Pril. 65, 131–141 (2009); English transl.: J. Math. Sci., New York 165, No. 6, 743–754 (2010).Google Scholar
  17. 17.
    M. V. Shamolin, “New cases of full integrability in dynamics of a dynamically symmetric four-dimensional solid in a nonconservative field” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 425, No. 3, 338–342 (2009); English transl.: Dokl. Phys. 54, No. 3, 155–159 (2009).Google Scholar
  18. 18.
    M. V. Shamolin, “A completely integrable case in the dynamics of a four-dimensional rigid body in a non-conservative field” [in Russian], Usp. Mat. Nauk 65, No. 1, 189–190 (2010); English transl.: Russ. Math. Surv. 65, No. 1, 183–185 (2010).Google Scholar
  19. 19.
    M. V. Shamolin, “A new case of integrability in dynamics of a 4D-Solid in a nonconservative field” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 437, No. 2, 190–193 (2011); English transl.: Dokl. Phys. 56, No. 3, 186–189 (2011).Google Scholar
  20. 20.
    M. V. Shamolin, “Complete list of first integrals in the problem on the motion of a 4D solid in a resisting medium under assumption of linear damping” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 440, No. 2, 187–190 (2011); English transl.: Dokl. Phys. 56, No. 9, 498–501 (2011).Google Scholar
  21. 21.
    M. V. Shamolin, “A new case of integrability in the dynamics of a 4D-rigid body in a nonconservative field under the assumption of linear damping” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 444, No. 5, 506–509 (2012); English transl.: Dokl. Phys. 57, No. 6, 250–253 (2012).Google Scholar
  22. 22.
    M. V. Shamolin, “Comparison of complete integrability cases in Dynamics of a two-, three-, and four-dimensional rigid body in a nonconservative field” [in Russian], Sovrem. Mat. Pril. 76, 84–99 (2012); English transl.: J. Math. Sci., New York 187, No. 3, 346–359 (2012).Google Scholar
  23. 23.
    S. A. Chaplygin, “On motion of heavy bodies in an incompressible fluid” [in Russian], In: Collection of Works. Vol. 1, pp. 133–135, Akad. Nauk SSSR, Leningr. (1933).Google Scholar
  24. 24.
    S. A. Chaplygin, Selected Works [in Russian], Nauka, Moscow (1976).Google Scholar
  25. 25.
    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry [in Russian], Nauka, Moscow (1979); English transl.: Springer, New York etc. (1992).Google Scholar
  26. 26.
    D. V. Georgievskii and M. V. Shamolin, “Kinematics and mass geometry for a solid body with a fixed point in ℝn” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 380, No. 1, 47–50 (2001); English transl.: Dokl. Phys. 46, No. 9, 663–666 (2001).Google Scholar
  27. 27.
    D. V. Georgievskii and M. V. Shamolin, “Generalized Euler’s equations describing the motion of a rigid body with a fixed point in ℝn” [in Russian], Dokl. Akad. Nauk, Ross. Akad. Nauk 383, No. 5, 635–637 (2002); English transl.: Dokl. Phys. 47, No. 4, 316–318 (2002).Google Scholar
  28. 28.
    D. V. Georgievskii and M. V. Shamolin, “First integrals of motion equations of a generalized gyroscope in ℝn” [in Russian], Vestn. Mosk. Univ., Ser. I No. 5, 37–41 (2003); English transl.: Mosc. Univ. Math. Bull. 58, No. 5, 25–29 (2003).Google Scholar
  29. 29.
    V. I. Arnold, V. V. Kozlov, and A. I, Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics [in Russian], VINITI, Moscow (1985); English transl.: Sprnger, Berlin (2006).Google Scholar
  30. 30.
    N. Bourbaki, Lie Groups and Lie Algebras, Springer, Berlin etc. (1989).MATHGoogle Scholar
  31. 31.
    V. V. Kozlov, “Integrability and non-integrability in Hamiltonian mechanics” [in Russian], Usp. Mat. Nauk 38, No. 1, 3–67 (1983); English transl.: Russ. Math. Surv. 38, No. 1, 1–76 (1983).Google Scholar
  32. 32.
    M. V. Shamolin, “On integrability in transcendental functions” [in Russian], Usp. Mat. Nauk 53, No. 3, 209–210 (1998); English transl.: Russ. Math. Surv. 53, No. 3, 637–638 (1998).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Lomonosov Moscow State University, Institute of MechanicsMoscowRussia

Personalised recommendations