Journal of Mathematical Sciences

, Volume 217, Issue 6, pp 683–730 | Cite as

Connectedness and Other Geometric Properties of Suns and Chebyshev Sets

  • A. R. Alimov
  • I. G. Tsar’kov


This survey is concerned with structural characteristics of “suns” in normed linear spaces. Special attention is paid to connectedness and monotone path-connectedness of suns. We address both direct theorems of the geometric approximation theory, in which approximative properties of sets are derived from their structural characteristics, and inverse theorems, in which from approximative characteristics of sets one derives their structural properties.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Aizpuru and F. J. Garcia-Pacheco, “Some questions about rotundity and renormings in Banach spaces,” J. Aust. Math. Soc., 79, 131–140 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    N. I. Akhieser, “On extremal properties of some partial fractions,” Dokl. Akad. Nauk SSSR, 18, 495–499 (1930).Google Scholar
  3. 3.
    P. V. Al’brecht, “Orders of moduli of continuity of operators of almost best approximation,” Sb. Math., 83, No. 1, 1–22 (1995).MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. R. Alimov, “A number of connected components of sun’s complement,” East J. Approx., 1, No. 4, 419–429 (1995).MathSciNetzbMATHGoogle Scholar
  5. 5.
    A. R. Alimov, “Chebyshev set’s complement,” East J. Approx., 2, No. 2, 215–232 (1996).Google Scholar
  6. 6.
    A. R. Alimov, “Chebyshev compact sets in the plane,” Tr. Mat. Inst. Steklova, 219, 8–26 (1997).MathSciNetzbMATHGoogle Scholar
  7. 7.
    A. R. Alimov, “Is every Chebyshev set convex?” Mat. Prosv., Ser. 3, 2, 155–172 (1998).Google Scholar
  8. 8.
    A. R. Alimov, “The number of connected components of Chebyshev sets and suns complement,” Proc. A. Razmadze Math. Inst., 117, 135–136 (1998).Google Scholar
  9. 9.
    A. R. Alimov, “Geometrical characterization of strict suns in (n),” Mat. Zametki, 70, No. 1, 3–11 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    A. R. Alimov, “On the structure of the complements of Chebyshev sets,” Funkts. Anal. Prilozh., 35, No. 3, 19–27 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    A. R. Alimov, “Characterisations of Chebyshev sets in c0,” J. Approx. Theory, 129, 217–229 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    A. R. Alimov, “Connectedness of suns in the space c0,” Izv. Ross. Akad. Nauk, Ser. Mat., 69, No. 4, 3–18 (2005).MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. R. Alimov, “Convexity of Chebyshev sets contained in a subspace,” Mat. Zametki, 78, No. 1, 3–15 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    A. R. Alimov, “The geometric structure of Chebyshev sets in ℓ(n),” Funkts. Anal. Prilozh., 39, No. 1, 1–10 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    A. R. Alimov, “Monotone path-connectedness of Chebyshev sets in the space C(Q),” Mat. Sb., 197, No. 9, 3–18 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    A. R. Alimov, “Preservation of approximative properties of subsets of Chebyshev sets and suns in Rn,” Izv. Ross. Akad. Nauk, Ser. Mat., 70, No. 5, 3–12 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    A. R. Alimov, “Preservation of approximative properties of Chebyshev sets and suns in a plane,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 4, 46–49 (2008).Google Scholar
  18. 18.
    A. R. Alimov, “Local solarity of suns in normed linear spaces,” Fundam. Prikl. Mat., 17, No. 7, 3–14 (2011/2012).Google Scholar
  19. 19.
    A. R. Alimov, “A monotone path connected Chebyshev set is a sun,” Mat. Zametki, 91, No. 2, 305–307 (2012).MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    A. R. Alimov, “Bounded strict solar property of strict suns in the space C(Q),” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 6, 16–19 (2012).Google Scholar
  21. 21.
    A. R. Alimov, “Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces,” Izv. Ross. Akad. Nauk, Ser. Mat., 78, No. 4, 641–655 (2014).MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    A. R. Alimov and V. Yu. Protasov, “Separation of convex sets by extreme hyperplanes,” Fundam. Prikl. Mat., 17, No. 4, 3–12 (2011/2012).Google Scholar
  23. 23.
    D. Amir and F. Deutsch, “Suns, moons and quasi-polyhedra,” J. Approx. Theory, 6, 176–201 (1972).MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    V. I. Andreev, “The existence of discontinuous metric projections,” Mat. Zametki, 16, No. 6, 1107–1111 (1994).MathSciNetzbMATHGoogle Scholar
  25. 25.
    J. Andres, G. Gabor, and L. Górniewicz, “Acyclicity of solution sets to functional inclusions,” Nonlinear Anal., 49, 671–688 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    V. S. Balaganskii, “An antiproximinal set in a strictly convex space with Fréchet differentiable norm,” East J. Approx., 2, No. 2, 131–138 (1996).Google Scholar
  27. 27.
    V. S. Balaganskii, “On convex closed bounded bodies without farthest points such that the closure of their complement is antiproximinal,” Tr. Inst. Mat. Mekh. UrO RAN, 17, No. 3, 1–7 (2011).Google Scholar
  28. 28.
    V. S. Balaganskii and L. P. Vlasov, Approximatively-Geometrical Properties of Sets in Banach Spaces, IMM UrO RAN, Ekaterinburg (1990).Google Scholar
  29. 29.
    V. S. Balaganskii and L. P. Vlasov, “The problem of convexity of Chebyshev sets,” Usp. Mat. Nauk, 51, No. 6, 125–188 (1996).MathSciNetCrossRefGoogle Scholar
  30. 30.
    M. V. Balashov and G. E. Ivanov, “Weakly convex and proximally smooth sets in Banach spaces,” Izv. Ross. Akad. Nauk, Ser. Mat., 73, No. 3, 23–66 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    M. V. Balashov and D. Repovš, “Uniform convexity and the splitting problem for selections,” J. Math. Anal. Appl., 360, No. 1. 307–316 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    H. H. Bauschke, X. Wang, J. Ye, and X. Yuan, “Bregman distances and Chebyshev sets,” J. Approx. Theory, 159, 3–25 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    H. H. Bauschke, X. Wang, J. Ye, and X. Yuan, “Bregman distances and Klee sets,” J. Approx. Theory, 158, 170–183 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    B. B. Bednov, Shortest Networks in Banach Spaces [in Russian], Candidate’s Dissertation in Physics and Mathematics, Moscow (2014).Google Scholar
  35. 35.
    Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Amer. Math. Soc., Providence (2000).Google Scholar
  36. 36.
    V. I. Berdyshev, “On the modulus of continuity of an operator of best approximation,” Mat. Zametki, 15, No. 5, 478–484 (1974).MathSciNetGoogle Scholar
  37. 37.
    V. I. Berdyshev, “Spaces with a uniformly continuous metric projection,” Mat. Zametki, 17, No. 1, 3–8 (1975).MathSciNetzbMATHGoogle Scholar
  38. 38.
    V. I. Berdyshev, “Continuity of a multivalued mapping connected with the problem of minimizing a functional,” Izv. Ross. Akad. Nauk, Ser. Mat., 16, No. 3, 431–456 (1981).zbMATHGoogle Scholar
  39. 39.
    V. I. Berdyshev, “Variation of the norms in the problem of best approximation,” Mat. Zametki, 21, No. 2, 95–103 (1981).MathSciNetzbMATHGoogle Scholar
  40. 40.
    V. I. Berdyshev and L. V. Petrak, Approximation of Functions, Compression of Numerical Information, Applications, IMM UrO RAN, Ekaterinburg (1999).zbMATHGoogle Scholar
  41. 41.
    H. Berens and L. Hetzelt, “Suns and contractive retracts in the plane,” in: N. P. Koreneichuk et al., eds., Theory of Approximations of Functions. Proc. Int. Conf., Kukuev, May 31–June 5, 1983, Nauka, Moscow (1983), pp. 483–487.Google Scholar
  42. 42.
    H. Berens and L. Hetzelt, “Die metrische Struktur der Sonnen in ℓ(n),” Aequationes Math., 27, 274–287 (1984).MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    H. Berens and L. Hetzelt, “On accretive operators on n,” Pacific J. Math., 125, No. 2, 301–315 (1986).MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    F. Bernard and L. Thibault, “Prox-regularity of functions and sets in Banach spaces,” Set-Valued Anal., 12, 25–47 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    J. Blatter, P. D. Morris, and D. E. Wulbert, “Continuity of the set-valued metric projection,” Math. Ann., 178, No. 1, 12–24 (1968).MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    É. Borel, Le¸cons sur les Fonctions de Variables Reelles et les Développements en séries de Polynomes, Gauthier-Villars, Paris (1905).Google Scholar
  47. 47.
    K. Böröczky, Jr., Finite Packing and Covering, Cambridge Univ. Press, Cambridge (2004).zbMATHCrossRefGoogle Scholar
  48. 48.
    P. A. Borodin, “An example of a bounded approximately compact set that is not compact,” Usp. Mat. Nauk, 49, No. 4, 157–158 (1994).zbMATHGoogle Scholar
  49. 49.
    P. A. Borodin, “Convexity of 2-Chebyshev sets in Hilbert space,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., 63, No. 3, 96–98 (2008).MathSciNetzbMATHGoogle Scholar
  50. 50.
    P. A. Borodin, “Approximation by simple partial fractions on the semi-axis,” Mat. Sb., 200(8), 1127–148 (2009).zbMATHCrossRefGoogle Scholar
  51. 51.
    P. A. Borodin, “Approximation by simple partial fractions with constraints on the poles,” Mat. Sb., 203, No. 1, 1553–1570 (2009).zbMATHGoogle Scholar
  52. 52.
    P. A. Borodin, “On the convexity of N-Chebyshev sets,” Izv. Ross. Akad. Nauk, Ser. Mat., 75, No. 4, 19–46 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    P. A. Borodin, “Examples of sets with given approximation properties in WCG-space,” Mat. Zametki, 94, No. 5, 643–647 (2013).MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    J. M. Borwein and J. D. Vanderwerff, Convex Functions: Constructions, Characterizations and Counterexamples, Cambridge Univ. Press, Cambridge (2010).zbMATHCrossRefGoogle Scholar
  55. 55.
    D. Braess, “Geometrical characterizations for nonlinear uniform approximation,” J. Approx. Theory, 11, 260–274 (1974).MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    D. Braess, Nonlinear Approximation Theory, Springer, Berlin (1986).zbMATHCrossRefGoogle Scholar
  57. 57.
    B. E. Breckner, A. Horváth, and C. Varga, “A multiplicity result for a special class of gradient-type systems with non-differentiable term,” Nonlinear Anal., 70, 606–620 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    W. W. Breckner, “Zur Charakterisierung von Minimall¨osungen,” Mathematica (Cluj ), 12 (35), No. 1, 25–38 (1970).Google Scholar
  59. 59.
    W. W. Breckner and B. Brosowski, “Ein Kriterium zur Charakterisierung von Sonnen,” Mathematica (Cluj), 13, 181–188 (1971).Google Scholar
  60. 60.
    A. Brondsted, “Convex sets and Chebyshev sets,” Math. Scand., 17, No. 1, 5–16 (1965).MathSciNetzbMATHGoogle Scholar
  61. 61.
    A. Brondsted, “Convex sets and Chebyshev sets. II,” Math. Scand., 18, No. 1, 5–15 (1965).MathSciNetzbMATHGoogle Scholar
  62. 62.
    B. Brosowski, Nicht-Lineare Tschebyscheff-Approximation, Bibliogr. Inst. Hochschulskripten Bd. 808/808a, Mannheim (1968).Google Scholar
  63. 63.
    B. Brosowski, “Einige Bemerkungen zum verallgemeinerten Kolmogoroffschen Kriterium,” in: L. Collatz and H. Unger, eds., Funktionalanalytische Methoden der numerischen Mathematik. Vortragsausz ¨uge der Tagung ¨uber funktionalanalytische Methoden der numerischen Mathematik vom bis 25. November 1967 im Mathematischen Forschungsinstitut Oberwolfach (Schwarzwald), Birkh¨auser, Basel (1969), pp. 25–34.Google Scholar
  64. 64.
    B. Brosowski, “Nichtlineare Approximation in normierten Vektorräumen,” in: P. L. Butzer and B. Sz˝okefalvi-Nagy, Abstract Spaces and Approximation. Proc. Conf. held at the Mathematical Research Institute at Oberwolfach, Black Forest, July 18–27, 1968, Birkh¨auser, Basel (1969), pp. 140–159.Google Scholar
  65. 65.
    B. Brosowski and F. Deutsch, On Some Geometrical Properties of Suns, Preprint, Ges. Wiss. Datenverarb. MBH G¨ottingen (1972).Google Scholar
  66. 66.
    B. Brosowski and F. Deutsch, “Some new continuity concepts for metric projections,” Bull. Am. Math. Soc., 6, 974–978 (1972).MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    B. Brosowski and F. Deutsch, “On some geometric properties of suns,” J. Approx. Theory, 10, No. 3, 245–267 (1974).MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    B. Brosowski and F. Deutsch, “Radial continuity of set-valued metric projection,” J. Aprox. Theory, 11, 236–253 (1974).MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    B. Brosowski and F. Deutsch, J. Lambert, and P. D. Morris, “Chebyshev sets which are not suns,” Math. Ann., 212, No. 1, 89–101 (1974).Google Scholar
  70. 70.
    B. Brosowski and B. Wegmann, “Charakterisierung bester Approximationen in normierten Vektorraumen,” J. Approx. Theory, 3, No. 4, 369–397 (1970).MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    A. L. Brown, “A rotund, reflexive space having a subspace of co-dimension 2 with a discontinuous metric projection,” Michigan Math. J., 21, 145–151 (1974).MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    A. L. Brown, “Chebyshev sets and facial systems of convex sets in finite-dimensional spaces,” Proc. London Math. Soc. (3), 41, 297–339 (1980).Google Scholar
  73. 73.
    A. L. Brown, “Chebyshev sets and the shapes of convex bodies,” in: C. A. Micchelli, ed., Methods of Functional Analysis in Approximation Theory. Proc. Int. Conf., Indian Inst. Techn., Bombay, 16–20.XII.1985, Birkh¨auser, Basel (1986), pp. 97–121.Google Scholar
  74. 74.
    A. L. Brown, “Suns in normed linear spaces which are finite-dimensional,” Math. Ann., 279, 87–101 (1987).MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    A. L. Brown, “On the connectedness properties of suns in finite-dimensional spaces,” Proc. Cent. Math. Anal. Aust. Natl. Univ., 20, 1–15 (1988).zbMATHGoogle Scholar
  76. 76.
    A. L. Brown, “On the problem of characterising suns in finite-dimensional spaces,” Rend. Circ. Math. Palermo Ser. II, 68, 315–328 (2002).MathSciNetzbMATHGoogle Scholar
  77. 77.
    A. L. Brown, “Suns in polyhedral spaces,” in: D. G. Álvarez, G. Lopez Acedo, and R. V. Caro, eds., Seminar of Mathem. Analysis. Proceedings. Univ. Malaga and Seville (Spain), Sept. 2002—Feb. 2003, Univ. Sevilla, Sevilla (2003), pp. 139–146.Google Scholar
  78. 78.
    L. N. H. Bunt, Bijdrage tot de Theorie der Convexe Puntverzamelingen, Thesis, Univ. Groningen, Amsterdam (1934).Google Scholar
  79. 79.
    P. Butzer and F. Jongmans, “P. L. Chebyshev (1821–1894): A guide to his life and work,” J. Approx. Theory, 96, 111–138 (1999).Google Scholar
  80. 80.
    E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York (1966).zbMATHGoogle Scholar
  81. 81.
    K. V. Chesnokova, “The linearity coefficient of metric projections onto one-dimensional Chebyshev subspaces of the space C,” Mat. Zametki, 96, No. 3-4, 556–562 (2014).Google Scholar
  82. 82.
    Ch. Chidume, Geometric Properties of Banach Spaces and Nonlinear Iterations, Springer, London (2009).zbMATHGoogle Scholar
  83. 83.
    L. Chong and G. A. Watson, “Characterization of a best and a unique best approximation from constrained rationals,” Comput. Math. Appl., 30, 51–57 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    G. Choquet, “Sur la meilleure approximation dans les espaces vectoriels normés,” Rev. Math. Pures Appl., 8, No. 4, 541–542 (1963).MathSciNetzbMATHGoogle Scholar
  85. 85.
    S. Cobzaş, “Geometric properties of Banach spaces and the existence of nearest and farthest points,” J. Abstr. Appl. Anal., No. 3, 259–285 (2005).Google Scholar
  86. 86.
    S. Cobza,s, Functional Analysis in Asymmetric Normed Spaces, Birkh¨auser, Basel (2012).Google Scholar
  87. 87.
    E. Dancer and B. Sims, “Weak star separability,” Bull. Aust. Math. Soc., 20, No. 2, 253–257 (1979).MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    F. R. Deutsch, Best Approximation in Inner Product Spaces, Springer, Berlin (2001).zbMATHCrossRefGoogle Scholar
  89. 89.
    F. Deutsch and J. M. Lambert, “On continuity of metric projections,” J. Approx. Theory, 29, No. 2, 116–131 (1980).MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    C. Dierieck, “Characterization for best nonlinear approximations: A geometrical interpretation,” J. Approx. Theory, 14, No. 3, 163–187 (1975).MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    R. Dragoni, J. W. Macki, P. Nistri, and P. Zecca, Solution Sets of Differential Equations in Abstract Spaces, Longman, Harlow (1996).zbMATHGoogle Scholar
  92. 92.
    Ch. Dunham, “Rational Chebyshev approximation on subsets approximation,” J. Approx. Theory, 1, 484–487 (1968).MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    Ch. Dunham, “Characterizability and uniqueness in real Chebyshev approximation,” J. Approx. Theory, 2, 374–383 (1969).MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Ch. Dunham, “Chebyshev sets in C[0, 1] which are not suns,” Can. Math. Bull., 18, No. 1, 35–37 (1975).MathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    Ch. Dunham, “Transformed rational Chebyshev approximation,” J. Approx. Theory, 19, 200–204 (1977).MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    Ch. Dunham, “Chebyshev approximation by products,” J. Approx. Theory, 43, 299–301 (1985).MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    K. Eda, U. H. Karimov, and D. Repovš, “On (co)homology locally connected spaces,” Topol. Appl., 120, 397–401 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    N. V. Efimov and S. B. Stechkin, “Some properties of Chebyshev sets,” Dokl. Akad. Nauk SSSR, 118, No. 1, 17–19 (1958).MathSciNetzbMATHGoogle Scholar
  99. 99.
    N. V. Efimov and S. B. Stechkin, “Approximative compactness and Chebyshev sets,” Dokl. Akad. Nauk SSSR, 140, No. 3, 522–524 (1961).MathSciNetzbMATHGoogle Scholar
  100. 100.
    F. Faraci and A. Iannizzotto, “An extension of a multiplicity theorem by Ricceri with an application to a class of quasilinear equations,” Stud. Math., 172, 275–287 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    F. Faraci and A. Iannizzotto, “Well posed optimization problems and nonconvex Chebyshev sets in Hilbert spaces,” SIAM J. Optim., 19, No. 1, 211–216 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    J. Fletcher, The Chebyshev Set Problem, Ph.D. Thesis, Univ. of Auckland (2013).Google Scholar
  103. 103.
    V. P. Fonf, “Weakly extremal properties of Banach spaces,” Mat. Zametki, 45, No. 6, 83–92 (1989).MathSciNetzbMATHGoogle Scholar
  104. 104.
    V. P. Fonf, J. Lindenstrauss, and L. Veselý, “Best approximation in polyhedral Banach spaces,” J. Approx. Theory, 163, 1748–1771 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    C. Franchetti and E. W. Cheney, “The embedding of proximinal sets,” J. Approx. Theory, 48, No. 2, 213–225 (1986).MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    C. Franchetti and S. Roversi, Suns, M-Connected Sets and P-Acyclic Sets in Banach Spaces, Preprint No. 50139, Istituto di Matematica Applicata “G. Sansone” (1988).Google Scholar
  107. 107.
    A. V. Fursikov, “Properties of solutions of some extremal problems connected with the Navier–Stokes system,” Mat. Sb., 46, No. 3, 323–351 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    A. V. Fursikov, “Some questions of the theory of optimal control over nonlinear systems with distributed parameters,” Tr. Semin. Petrovskogo, No. 9, 167–189 (1983).Google Scholar
  109. 109.
    A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications, Amer. Math. Soc., Providence (2000).Google Scholar
  110. 110.
    A. L. Garkavi, “Allgemeine Verfeinerungssätze,” Rev. Math. Pures Appl., 6, No. 2, 293–303 (1961).MathSciNetzbMATHGoogle Scholar
  111. 111.
    A. L. Garkavi, “On a criterion for best approximation element,” Sib. Mat. Zh., 5, No. 2, 472–476 (1964).MathSciNetzbMATHGoogle Scholar
  112. 112.
    A. L. Garkavi, “On existence of best approximation of a function of two variables by sums of plane waves,” Tr. Mat. Inst. Steklova, 219, 123–129 (1997).MathSciNetzbMATHGoogle Scholar
  113. 113.
    J. R. Giles, “The Mazur intersection problem,” J. Convex Anal., 13, No. 3–4, 739–750 (2006).MathSciNetzbMATHGoogle Scholar
  114. 114.
    J. R. Giles, D. A. Gregory, and B. Sims, “Characterisation of normed linear spaces with Mazur’s intersection property,” Bull. Aust. Math. Soc., 18, 105–123 (1978).MathSciNetzbMATHCrossRefGoogle Scholar
  115. 115.
    K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ. Press, Cambridge (1990).zbMATHCrossRefGoogle Scholar
  116. 116.
    V. L. Goncharov, “Theory of best approximation of functions,” in: Scientific Heritage of P. L. Chebyshev, AN SSSR, Moscow (1945), pp. 122–172.Google Scholar
  117. 117.
    V. L. Goncharov, “The theory of best approximation of functions,” J. Approx. Theory, 106, 2–57 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    L. Górniewicz, “Topological structure of solution sets: current results,” Arch. Math. (Brno), 36, 343–382 (2000).Google Scholar
  119. 119.
    L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Springer, Berlin (2006).zbMATHGoogle Scholar
  120. 120.
    A. S. Granero, M. Jiménez-Sevilla, and J. P. Moreno, “Intersections of closed balls and geometry of Banach spaces,” Extracta Math., 19, No. 1, 55–92 (2004).MathSciNetzbMATHGoogle Scholar
  121. 121.
    P. M. Gruber, “Planar Chebyshev sets,” in: Mathem. Structure—Computational Math.—Math. Modelling, Vol. 2, Bulgar. Acad. Sci., Sofia (1984), pp. 184–191.Google Scholar
  122. 122.
    A. A. Gusak, Approximation Theory [in Russian], BGU, Minsk (1972).zbMATHGoogle Scholar
  123. 123.
    H. Haghshenas, A. Assadi, and T. D. Narang, “A look at proximinal and Chebyshev sets in Banach spaces,” Le Matematiche, 69, Fasc. I, 71–87 (2014).Google Scholar
  124. 124.
    K. P. Hart, J. Nagata, and J. E. Vaughan, Encyclopedia of General Topology, Elsevier, Amsterdam (2004).zbMATHGoogle Scholar
  125. 125.
    H. K. Hsiao and R. Smarzewski, “Optimal sunny selections for metric projections,” J. Approx. Theory, 82, No. 3, 440–467 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    Sh. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, Vol. II: Applications, Kluwer, Dordrecht (2000).Google Scholar
  127. 127.
    Sze-Tsen Hu, Theory of Retracts, Wayne State Univ. Press, Detroit (1965).zbMATHGoogle Scholar
  128. 128.
    G. E. Ivanov, “On well posed best approximation problems for a nonsymmetric seminorm,” J. Convex Anal., 20, No. 2, 501–529 (2013).MathSciNetzbMATHGoogle Scholar
  129. 129.
    G. E. Ivanov and M. S. Lopushanksi, “Approximative properties of convex sets in spaces with asymmetric semi-norm,” Tr. MFTI, 4, No. 4, 94–104 (2012).Google Scholar
  130. 130.
    V. K. Ivanov, V. V. Vasin, and V. P. Tanana, Theory of Linear Ill-Posed Problems and Its Applications, Walter de Gruyter, Berlin (2002).zbMATHCrossRefGoogle Scholar
  131. 131.
    M. Jiang, “On Johnson’s example of a nonconvex Chebyshev set,” J. Approx. Theory, 74, 152–158 (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  132. 132.
    M. Jiménez-Sevilla and J. P. Moreno, “A note on norm attaining functionals,” Proc. Am. Math. Soc., 126, 1989–1997 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  133. 133.
    G. G. Johnson, “Chebyshev foam,” Topol. Appl., 74, 163–171 (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  134. 134.
    G. G. Johnson, “Closure in a Hilbert space of a prehilbert space Chebyshev set,” Topol. Appl., 153, 239–244 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  135. 135.
    A. Jourani, L. Thibault, and D. Zagrodny, “Differential properties of the Moreau envelope,” J. Funct. Anal., 266, 1185–1237 (2014).MathSciNetzbMATHCrossRefGoogle Scholar
  136. 136.
    M. I. Karlov and I. G. Tsar’kov, “Convexity and connectedness of Chebyshev sets and suns,” Fundam. Prikl. Mat., 3, No. 4, 967–978 (1997).MathSciNetzbMATHGoogle Scholar
  137. 137.
    S. Ya. Khavinson, “Approximative properties of some sets in spaces of continuous functions,” Anal. Math., 29, 87–105 (2003).MathSciNetCrossRefGoogle Scholar
  138. 138.
    P. Kirchberger, “Über Tschebyscheffsche Annäherungsmethoden,” Math. Ann., 57, 509–540 (1903).MathSciNetzbMATHCrossRefGoogle Scholar
  139. 139.
    V. Klee, “A characterization of convex sets,” Am. Math. Mon., 56, 247–249 (1949).MathSciNetzbMATHCrossRefGoogle Scholar
  140. 140.
    V. Klee, “Dispersed Chebyshev sets and covering by balls,” Math. Ann., 257, No. 2, 251–260 (1981).MathSciNetzbMATHCrossRefGoogle Scholar
  141. 141.
    V. Klee, “Do infinite-dimensional Banach spaces admit nice tiling?” Stud. Sci. Math. Hungar., 21, 415–427 (1986).MathSciNetzbMATHGoogle Scholar
  142. 142.
    H. König, “A general minimax theorem based on connectedness,” Arch. Math. (Basel), 59, 55–64 (1992).Google Scholar
  143. 143.
    S. V. Konyagin, “Connectedness of sets in best approximation problems,” Sov. Math. Dokl., 24, 460–463 (1981).zbMATHGoogle Scholar
  144. 144.
    S. V. Konyagin, “Sets of points of nonemptiness and continuity of the metric projection”, Math. Notes, 33, No. 5, 331–338 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  145. 145.
    S. V. Konyagin, “On continuous operators of generalized rational approximation,” Mat. Zametki, 44, No. 3, 404 (1988).Google Scholar
  146. 146.
    S. V. Konyagin, “On approximative properties of arbitrary closed sets in Banach spaces,” Fundam. Prikl. Mat., 3, No. 4, 979–989 (1997).MathSciNetzbMATHGoogle Scholar
  147. 147.
    S. V. Konyagin and I. G. Tsar’kov, “Efimov–Stechkin spaces,” Mosc. Univ. Math. Bull., 41, No. 5, 20–28 (1986).MathSciNetzbMATHGoogle Scholar
  148. 148.
    V. A. Koshcheev, “The connectivity and approximative properties of sets in linear normed spaces,” Math. Notes, 17, No. 2, 114–119 (1975).CrossRefGoogle Scholar
  149. 149.
    V. A. Koshcheev, “Connectedness and solar properties of sets in normed linear spaces,” Math. Notes, 19, No. 2, 158–164 (1976).MathSciNetCrossRefGoogle Scholar
  150. 150.
    V. A. Koshcheev, “Some properties of the δ-projection in normed linear spaces,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 5, 36–42 (1976).Google Scholar
  151. 151.
    V. A. Koshcheev, “On the structure of suns in Banach spaces,” in: Z. Ciesielski, ed., Approximation of Functions, North–Holland, Gdańsk (1979), pp. 371–376.Google Scholar
  152. 152.
    V. A. Koshcheev, “An example of a disconnected sun in a Banach space,” Math. Notes, 26, No. 1, 535–537 (1980).MathSciNetzbMATHCrossRefGoogle Scholar
  153. 153.
    V. A. Koshcheev, “Vlasov–Wulbert connectedness of sets in Hilbert space,” Mat. Zametki, 80, No. 5, 790–792 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  154. 154.
    W. Kryszewski, “On the existence of equilibria and fixed points of maps under constraints,” in: R. F. Brown, M. Furi et al., eds., Handbook of Topological Fixed Point Theory, Springer, Berlin (2005).Google Scholar
  155. 155.
    C. Li, W. Song, and J.-C. Yao, “The Bregman distance, approximate compactness and convexity of Chebyshev sets in Banach spaces,” J. Approx. Theory, 162, 1128–1149 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  156. 156.
    E. D. Livshits, “Stability of the operator of ε-projection to the set of splines in C[0, 1],” Izv. Math., 67, No. 1, 91–119 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  157. 157.
    E. D. Livshits, “Continuous selections of operators of almost best approximation by splines in the space Lp[0, 1]. I,” Russ. J. Math. Phys., 12, No. 2, 215–218 (2005).MathSciNetzbMATHGoogle Scholar
  158. 158.
    E. D. Livshits, “On almost-best approximation by piecewise polynomial functions in the space C[0, 1],” Mat. Zametki, 78, No. 4, 629–634 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  159. 159.
    H. J. Maehly and Ch. Witzgall, “Tschebyscheff-Approximation in kleinen Intervallen. II. Stetigkeitssatze f¨ur gebrochen rationale Approximationen,” Numer. Math., 2, 293–307 (1960).MathSciNetzbMATHCrossRefGoogle Scholar
  160. 160.
    Yu. V. Malykhin, “Convexity condition in Cucker–Smale theorems in the theory of teaching,” Math. Notes, 84, No. 1, 142–146 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  161. 161.
    H. Mann, “Untersuchungen ¨uber Wabenzellen bei allgemeiner Minkowskischer Metrik,” Monatsh. Math. Phys., 42, 74–83 (1937).MathSciNetzbMATHCrossRefGoogle Scholar
  162. 162.
    A. V. Marinov, “Stability estimates of continuous selections for metric almost-projections,” Math. Notes, 55, No. 4, 367–371 (1994).MathSciNetzbMATHCrossRefGoogle Scholar
  163. 163.
    A. V. Marinov, “The Lipschitz constants of the metric ε-projection operator in spaces with given modules of convexity and smoothness,” Izv. Math., 62, No. 2, 313–318 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  164. 164.
    W. S. Massey, Homology and Cohomology Theory, Marcel Dekker, New York (1978).zbMATHGoogle Scholar
  165. 165.
    R. E. Megginson, An Introduction to Banach Space Theory, Springer, New York (1998).zbMATHCrossRefGoogle Scholar
  166. 166.
    G. Meinardus and D. Schwedt, “Nichtlineare Approximation,” Arch. Ration. Mech. Anal. 17, 297–326 (1964).MathSciNetCrossRefGoogle Scholar
  167. 167.
    S. A. Melikhov, “Steenrod homotopy,” Russ. Math. Surv., 64, No. 3, 469–551 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  168. 168.
    K. Menger, “Untersuchungen über allgemeine Metrik,” Math. Ann., 100, 75–163 (1928).MathSciNetzbMATHCrossRefGoogle Scholar
  169. 169.
    J. P. Moreno and R. Schneider, “Continuity properties of the ball hull mapping,” Nonlinear Anal., 66, 914–925 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  170. 170.
    T. S. Motzkin, “Sur quelques propriétés caractéristiques des ensembles convexes,” Rend. Ac. Lincei, Cl. VI, 21, 562–567 (1935).Google Scholar
  171. 171.
    N. V. Nevesenko, “Strict suns and semicontinuity below metric projections in linear normed spaces,” Mat. Zametki, 23, No. 4, 563–572 (1978).MathSciNetzbMATHGoogle Scholar
  172. 172.
    N. V. Nevesenko, “The metric projection and connectedness of sets in linear normed spaces,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 1, 51–53 (1979).Google Scholar
  173. 173.
    G. Nürnberger, “Strongly unique spline approximation with free knots,” Constr. Approx., 3, 31–42 (1987).MathSciNetzbMATHCrossRefGoogle Scholar
  174. 174.
    G. Nürnberger, Approximation by Spline Functions, Springer, Berlin (1989).zbMATHCrossRefGoogle Scholar
  175. 175.
    E. V. Oshman, “Chebyshev sets and the continuity of metric projection,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 9 (100), 78–82 (1970).Google Scholar
  176. 176.
    E. V. Oshman, “Characterization of subspaces with continuous metric projection in normed linear spaces,” Dokl. Akad. Nauk SSSR, 207, No. 2, 78–82 (1972).MathSciNetGoogle Scholar
  177. 177.
    S. Papadopoulou, “A connected separable metric space with a dispersed Chebyshev set,” J. Approx. Theory, 39, 320–323 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  178. 178.
    P. L. Papini, “Minimal and closest points nonexpansive and quasi-nonexpansive retractions in real Banach spaces,” in: P. M. Gruber and J. M. Wills, eds., Convexity and Its Applications, Birkh¨auser, Basel (1983), pp. 248–263.Google Scholar
  179. 179.
    R. R. Phelps, “A representation theorem for bounded convex sets,” Proc. Am. Math. Soc., 11, 976–983 (1960).MathSciNetzbMATHCrossRefGoogle Scholar
  180. 180.
    R. A. Poliquin and R. T. Rockafellar, “Prox-regular functions in variational analysis,” Trans. Am. Math. Soc. 348, 1805–1838 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  181. 181.
    W. Pollul, Topologien auf Mengen von Teilmengen und Stetigkeit von mengenwertigen metrischen Projektionen, Diplomarbeit, Bonn (1967).Google Scholar
  182. 182.
    E. S. Polovinkin and M. V. Balashov, Elements of Convex and Strictly Convex Analysis [in Russian], Fizmatlit, Moscow (2004).Google Scholar
  183. 183.
    I. A. Pyatyshev, “An example of a bounded approximatively compact set which is not locally compact,” Russ. Math. Surv., 62, No. 5, 163–164 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  184. 184.
    D. Repovš and P. V. Semenov, Continuous Selections of Multivalued Mappings, Kluwer, Dordrecht (1998).Google Scholar
  185. 185.
    D. Repovš and P. V. Semenov, “Continuous selections of multivalued mappings,” in: K. P. Hart, J. van Mill, and P. Simon, eds., Recent Progress in General Topology III, Atlantis Press (2014), pp. 711–750.Google Scholar
  186. 186.
    B. Ricceri, “A general multiplicity theorem for certain nonlinear equations in Hilbert spaces,” Proc. Am. Math. Soc., 133, 3255–3261 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  187. 187.
    B. Ricceri, “Recent advances in minimax theory and applications,” in: A. Chinchuluun et al., eds., Pareto Optimality, Game Theory and Equilibria, Springer, Berlin (2008), pp. 23–52.CrossRefGoogle Scholar
  188. 188.
    B. Ricceri, “A conjecture implying the existence of non-convex Chebyshev sets in infinite-dimensional Hilbert spaces,” Matematiche (Catania), 65, No. 2, 193–199 (2010).Google Scholar
  189. 189.
    G. Sh. Rubinshtein, “On uniform approximation of functions using generalized rational functions,” Russ. Math. Surv., 15, No. 3, 232–234 (1960).Google Scholar
  190. 190.
    K. S. Ryutin, “Lipschitz retractions and the operator of generalized rational approximation,” Fundament. Prikl. Mat., 6, No. 4, 1205–1220 (2000).MathSciNetzbMATHGoogle Scholar
  191. 191.
    K. S. Ryutin, Approximative Properties of Generalized Rational Fractions [in Russian], Candidate’s Dissertation in Physics and Mathematics, Moscow (2002).Google Scholar
  192. 192.
    K. S. Ryutin, “On uniformly continuous almost best generalized rational approximation operators,” Math. Notes, 87, No. 1, 141–145 (2010).Google Scholar
  193. 193.
    E. Schmidt, “Stetigkeitsaussagen bei der Tschebyscheff-Approximation mit positiven Exponentialsummen,” Math. Z., 113, 159–170 (1970).MathSciNetCrossRefGoogle Scholar
  194. 194.
    P. Schwartz, “Two theorems on suns in continuous function spaces,” in: G. G. Lorentz, ed., Approximation Theory. Proc. Int. Sympos. Univ. Texas, Austin, Academic Press, New York (1973), pp. 477–480.Google Scholar
  195. 195.
    L. L. Shumaker, Spline Functions. Basic Theory, Cambridge Univ. Press, Cambridge (2007).CrossRefGoogle Scholar
  196. 196.
    P. Shvartsman, “Lipschitz selections of set-valued mappings and Helly’s theorem,” J. Geom. Anal., 12, No. 2, 289–324 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  197. 197.
    I. Singer, “Sur l’extension des fonctionnelles linéaires,” Rev. Math. Pures Appl., 1, No. 2, 115–123 (1956).zbMATHGoogle Scholar
  198. 198.
    I. Singer, “Some remarks on approximative compactness,” Rev. Math. Pures Appl., 9, No. 2, 167–177 (1964).MathSciNetzbMATHGoogle Scholar
  199. 199.
    I. Singer, “On the extension of continuous linear functionals and best approximation in normed linear spaces,” Math. Ann., 159, No. 5, 344–355 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  200. 200.
    I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer, New Your (1970).Google Scholar
  201. 201.
    I. Singer, The Theory of Best Approximation and Functional Analysis, SIAM, Philadelphia (1974).zbMATHCrossRefGoogle Scholar
  202. 202.
    V. N. Solov’ev, “The subdifferential and the directional derivatives of the maximum of a family of convex functions,” Izv. Math., 62, No. 4, 807–832 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  203. 203.
    M. Sommer, “Charakterisierung von Minimallösungen in normierten Vektorräumen durch Eigenschaften von Hyperebenen,” J. Approx. Theory, 14, 103–114 (1975).MathSciNetzbMATHCrossRefGoogle Scholar
  204. 204.
    E. N. Sosov, “On the continuity and connectedness of the metric δ-projection in a uniformly convex geodesic space,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 3, 55–59 (2001).Google Scholar
  205. 205.
    K.-G. Steffens, The History of Approximation Theory. From Euler to Bernstein, Birkhäuser, Bonn (2006).Google Scholar
  206. 206.
    V. M. Tikhomirov, “Approximation theory”, in: Analysis. II. Convex Analysis and Approximation Theory, Encycl. Math. Sci., Vol. 14, Springer, Berlin (1990), pp. 93–243.Google Scholar
  207. 207.
    S. L. Troyanski, “An example of a smooth space whose dual is not strictly normed,” Stud. Math., 35, 305–309 (1970).MathSciNetGoogle Scholar
  208. 208.
    I. G. Tsar’kov, “Bounded Chebyshev sets in finite-dimensional Banach spaces,” Mat. Zametki, 36, No. 1, 73–87 (1984).MathSciNetzbMATHGoogle Scholar
  209. 209.
    I. G. Tsar’kov, “Relations between certain classes of sets in Banach spaces,” Mat. Zametki, 40, No. 2, 174–196 (1986).MathSciNetzbMATHGoogle Scholar
  210. 210.
    I. G. Tsar’kov, “On compact and weakly compact Tchebycheff sets in normed linear spaces,” Dokl. Akad. Nauk SSSR, 300, No. 1, 41–42 (1988).MathSciNetzbMATHGoogle Scholar
  211. 211.
    I. G. Tsar’kov, “Compact and weakly compact Chebyshev sets in linear normed spaces,” Tr. Mat. Inst. Steklova, 189, 169–184 (1989).MathSciNetzbMATHGoogle Scholar
  212. 212.
    I. G. Tsar’kov, “Local “homogeneity” of sets of uniqueness,” Mat. Zametki, 45, No. 5, 121–123 (1989).MathSciNetGoogle Scholar
  213. 213.
    I. G. Tsar’kov, “Continuity of the metric projection, structural and approximate properties of sets,” Mat. Zametki, 47, No. 2, 137–147 (1990).MathSciNetzbMATHGoogle Scholar
  214. 214.
    I. G. Tsar’kov, “Properties of the sets that have a continuous selection from the operator ,” Mat. Zametki, 48, No. 1, 122–131 (1990).MathSciNetGoogle Scholar
  215. 215.
    I. G. Tsar’kov, “Nonunique solvability of certain differential equations and their connection with geometric approximation theory,” Mat. Zametki, 75, No. 2, 287–301 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  216. 216.
    I. G. Tsar’kov, “Stability of the unique solvability for some differential equations,” Proc. Steklov Inst. Math. (Suppl.), 264, Suppl. 1, S185–S198 (2008).Google Scholar
  217. 217.
    I. G. Tsar’kov, “Approximative compactness and nonuniqueness in variational problems, and applications to differential equations,” Sb. Math., 202, No. 6, 909–934 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  218. 218.
    I. G. Tsar’kov, “Properties of sets admitting stable ε-selections,” Mat. Zametki, 89, No. 4, 608–613 (2011).MathSciNetCrossRefGoogle Scholar
  219. 219.
    I. G. Tsar’kov, “Stability of unique solvability of quasilinear equations given additional data,” Math. Notes 90, no. 6, 894–919 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  220. 220.
    I. G. Tsar’kov, “Sets having continuous selections from the almost best approximation operator,” Sovr. Probl. Mat. Mekh., 9, No. 2, 54–58 (2014).Google Scholar
  221. 221.
    A. A. Vasil’eva, “Closed spans in C(T) and (T) and their approximative properties,” Mat. Zametki, 73, No. 1, 135–138 (2003).MathSciNetCrossRefGoogle Scholar
  222. 222.
    A. A. Vasil’eva, “Closed spans in vector-valued function spaces and their approximative properties,” Izv. Ross. Akad. Nauk, Ser. Mat., 68, No. 4, 75–116 (2004).MathSciNetCrossRefGoogle Scholar
  223. 223.
    A. A. Vasil’eva, “An existence criterion for a smooth function under constraints,” Mat. Zametki, 82, No. 3, 335–346 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  224. 224.
    L. P. Vlasov, “Approximatively convex sets in Banach spaces,” Dokl. Akad. Nauk SSSR, 163, 18–21 (1965).MathSciNetGoogle Scholar
  225. 225.
    L. P. Vlasov, “Chebyshev sets and approximately convex sets,” Mat. Zametki, 2, No. 2, 191–200 (1967).Google Scholar
  226. 226.
    L. P. Vlasov, Chebyshev Sets and Their Generalizations [in Russian], Candidate’s Dissertation in Physics and Mathematics, Sverdlovsk (1967).Google Scholar
  227. 227.
    L. P. Vlasov, “Chebyshev sets and some generalizations of them,” Mat. Zametki, 3, No. 1, 59–69 (1968).MathSciNetzbMATHGoogle Scholar
  228. 228.
    L. P. Vlasov, “Approximate properties of sets in Banach spaces,” Mat. Zametki, 7, No. 5, 593–604 (1970).MathSciNetzbMATHGoogle Scholar
  229. 229.
    L. P. Vlasov, “Approximative properties of sets in normed linear spaces,” Usp. Mat. Nauk, 28, No. 6, 3–66 (1973).MathSciNetzbMATHGoogle Scholar
  230. 230.
    L. P. Vlasov, “Almost convex sets,” Mat. Zametki, 18, No. 3, 343–356 (1975).MathSciNetGoogle Scholar
  231. 231.
    L. P. Vlasov, “‘Suns’ and geometric properties of the unit sphere in a Banach space,” Tr. IMM UrO RAN, 5, 1–7 (1998).zbMATHGoogle Scholar
  232. 232.
    M. Volle and J.-B. Hiriart-Urruty, “A characterization of essentially strictly convex functions on reflexive Banach spaces,” Nonlinear Anal., 75, 1617–1622 (2012).MathSciNetzbMATHCrossRefGoogle Scholar
  233. 233.
    J. L. Walsh, “The existence of rational functions of best approximation,” Trans. Am. Math. Soc., 33, 668–689 (1931).MathSciNetzbMATHCrossRefGoogle Scholar
  234. 234.
    X.Wang, “On Chebyshev functions and Klee functions,” J. Math. Anal. Appl., 368, 293–310 (2010).Google Scholar
  235. 235.
    R. Wegmann, “Some properties of the peak-set-mapping,” J. Approx. Theory, 8, 262–284 (1973).MathSciNetzbMATHCrossRefGoogle Scholar
  236. 236.
    D. E.Wulbert, Continuity of Metric Projections. Approximation Theory in a Normed Linear Lattice, Ph.D. Thesis, Univ. Texas, Austin (1966).Google Scholar
  237. 237.
    D. E. Wulbert, “Continuity of metric projections,” Trans. Am. Math. Soc., 134, No. 2, 335–341 (1968).MathSciNetzbMATHCrossRefGoogle Scholar
  238. 238.
    W. Yang, Ch. Li, and G. A. Watson, “Characterization and uniqueness of nonlinear uniform approximation,” Proc. Edinburgh Math. Soc., 40, 473–482 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  239. 239.
    M. V. Yashina, “The density of the uniqueness set of some extremal problems,” Moscow Univ. Math. Bull., 41, No 6, 41–44 (1986).MathSciNetzbMATHGoogle Scholar
  240. 240.
    M. V. Yashina, Nonuniqueness of Solutions to Nonlinear Control Problems for Distributed Systems [in Russian], Candidate’s Dissertation in Physics and Mathematics, Moscow (1989).Google Scholar
  241. 241.
    L. Zajíček, “On σ-porous sets in abstract spaces,” Abstr. Appl. Anal., No. 5, 509–534 (2005).Google Scholar
  242. 242.
    Y. Zhang, Q. Li, and X. Zou, “One property of Bregman projection onto closed convex sets in Banach spaces and applications,” J. Math. Res., 3, No. 4 (2011).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations