Journal of Mathematical Sciences

, Volume 213, Issue 5, pp 750–755 | Cite as

The Einstein-Like Field Theory and Renormalization of the Shear Modulus

Article
  • 20 Downloads

The Einstein-like field theory is developed to describe an elastic solid containing distribution of screw dislocations with finite-sized core. The core self-energy is given by a gauge-translational Lagrangian that is quadratic in torsion tensor and corresponding to the three-dimensional Riemann–Cartan geometry. The Hilbert–Einstein gauge equation plays the role of unconventional incompatibility law. The stress tensor of the modified screw dislocations is smoothed within the core. The renormalization of the shear modulus caused by proliferation of dipoles of nonsingular screw dislocations is studied. Bibliography: 23 titles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Kleinert, Gauge Fields in Condensed Matter, Vols. I, II, World Scientific, Singapore (1989).CrossRefMATHGoogle Scholar
  2. 2.
    M. O. Katanaev and I. V. Volovich, “Theory of defects in solids and three-dimensional gravity,” Ann. Phys., 216, 1–28 (1992).CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    M. O. Katanaev, “Geometric theory of defects,” Usp. Fiz. Nauk, 48, 675–701 (2005).CrossRefGoogle Scholar
  4. 4.
    G. de Berredo-Peixoto and M. O. Katanaev, “Tube dislocations in gravity,” J. Math. Phys., 50, 042501 (2009).CrossRefMathSciNetGoogle Scholar
  5. 5.
    H. Kleinert, Multivalued Fields in Condensed Matter, Electromagnetism, and Gravitation, World Scientific, Singapore (2008).CrossRefMATHGoogle Scholar
  6. 6.
    C. Malyshev, “The T(3)-gauge model, the Einstein-like gauge equation, and Volterra dislocations with modified asymptotics,” Ann. Phys., 286, 249–277 (2000).CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    C. Malyshev, “The Einsteinian T(3)-gauge approach and the stress tensor of the screw dislocation in the second order: avoiding the cut-off at the core,” J. Phys. A: Math. Theor., 40, 10657–10684 (2007).CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    J. M. Kosterlitz and D. J. Thouless, “Ordering, metastability and phase transitions in two-dimensional systems,” J. Phys. C: Solid State Phys., 6, 1181–1203 (1973).CrossRefGoogle Scholar
  9. 9.
    A. Holz and J. T. N. Medeiros, “Melting transition of two-dimensional crystals,” Phys. Rev. B, 17, 1161–1174 (1978).CrossRefGoogle Scholar
  10. 10.
    D. R. Nelson, “Study of melting in two dimensions,” Phys. Rev. B, 18, 2318–2338 (1978).CrossRefGoogle Scholar
  11. 11.
    D. R. Nelson and B. I. Halperin, “Dislocation-mediated melting in two dimensions,” Phys. Rev. B, 19, 2457–2484 (1979).CrossRefGoogle Scholar
  12. 12.
    A. P. Young, “Melting and vector Coulomb gas in two dimensions,” Phys. Rev. B, 19, 1855–1866 (1979).CrossRefGoogle Scholar
  13. 13.
    S. Panyukov and Y. Rabin, “Statistical physics of interacting dislocation loops and their effect on the elastic moduli of isotropic solids,” Phys. Rev. B, 59, 13657–13671 (1999-I).Google Scholar
  14. 14.
    K. J. Strandburg, “Two-dimensional melting,” Rev. Mod. Phys., 60, 161–207 (1988).CrossRefGoogle Scholar
  15. 15.
    C. Malyshev, “Nonsingular screw dislocations as the Coulomb gas with smoothed out coupling and the renormalization of the shear modulus,” J. Phys. A: Math. Theor., 44, 285003 (2011).CrossRefMathSciNetGoogle Scholar
  16. 16.
    C. Malyshev, “Non-free gas of dipoles of nonsingular screw dislocations and the shear modulus near the melting,” Ann. Phys., 351, 22–34 (2014).CrossRefMathSciNetGoogle Scholar
  17. 17.
    D. S. Fisher, “Shear moduli and melting temperatures of two-dimensional electron crystals: low temperatures and high magnetic fields,” Phys. Rev. B, 26, 5009–5021 (1982).CrossRefGoogle Scholar
  18. 18.
    P. Kalinay and L. Šamaj, “Thermodynamic properties of the two-dimensional Coulomb gas in the low-density limit,” J. Stat. Phys., 106, 857–874 (2002).CrossRefMATHGoogle Scholar
  19. 19.
    B. Jancovici and L. Šamaj, “Guest charge and potential fluctuations in two-dimensional classical Coulomb systems,” J. Stat. Phys., 131, 613–629 (2008).CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    S. A. Gifford and G. Baym, “Dislocation-mediated melting in superfluid vortex lattices,” Phys. Rev. A, 78, 043607 (2008).CrossRefGoogle Scholar
  21. 21.
    H. H. von Grünberg, P. Keim, K. Zahn, and G. Maret, “Elastic behavior of a twodimensional crystal near melting,” Phys. Rev. Lett., 93, 255703 (2004).CrossRefGoogle Scholar
  22. 22.
    P. Dillmann, G. Maret, and P. Keim, “Comparison of 2D melting criteria in a colloidal system,” J. Phys.: Condens. Matter, 24, 464118 (2012).Google Scholar
  23. 23.
    H. Kleinert, “Melting of Wigner-like lattice of parallel polarized dipoles,” Europhys. Lett., 102, 56002 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.St.Petersburg Department of the Steklov Mathematical InstituteITMO UniversitySt. PetersburgRussia

Personalised recommendations