Advertisement

Journal of Mathematical Sciences

, Volume 213, Issue 5, pp 662–670 | Cite as

Time-Dependent Correlation Functions for the Bimodal Bose–Hubbard Model

  • N. M. Bogoliubov
Article

The bimodal Bose–Hubbard model is studied. The application of the Quantum Inverse Method allows us to calculate the time-dependent correlation functions of the model. Form-factors of the bosonic creation and annihilation operators in the wells are expressed in the determinantal form.

Keywords

Hubbard Model Einstein Condensate Monodromy Matrix Bethe Equation Quantum Inverse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Milburn, J. Corney, E. Wright, and D. Walls, “Quantum dynamics of an atomic Bose–Einstein condensate in a double-well potential,” Phys. Rev., A 55, 4318 (1997).CrossRefGoogle Scholar
  2. 2.
    D. Witthaut, F. Trimborn, and S. Wimberger, “Dissipation induced coherence of a two-mode Bose–Einstein condensate,” Phys. Rev. Lett., 101, 200402 (2008).CrossRefGoogle Scholar
  3. 3.
    E. Boukobza, M. Chuchem, D. Cohen, and A. Vardi, “Phase-diffusion dynamics in weakly coupled Bose–Einstein condensates,” Phys. Rev. Lett., 102, 180403 (2009).CrossRefGoogle Scholar
  4. 4.
    T. Pudlik, H. Hennig, D. Witthaut, and D. Campbell, “Dynamics of entanglement in a dissipative Bose–Hubbard dimer,” Phys. Rev., A 88, 063606 (2013).CrossRefGoogle Scholar
  5. 5.
    F. Trimborn, D. Witthaut, V. Kegel, and H. J. Korsch, “Nonlinear Landau–Zener tunneling in quantum phase space,” New J. Phys., 12, 053010 (2010).CrossRefGoogle Scholar
  6. 6.
    I. Tikhonenkov, M. G. Moore, and A. Vardi, “Robust sub-shot-noise measurement via Rabi–Josephson oscillations in bimodal Bose–Einstein condensates,” Phys. Rev., A 83, 063628 (2011).CrossRefGoogle Scholar
  7. 7.
    M. Chuchem, K. Smith-Mannschott, M. Hiller, T. Kottos, A. Vardi, and D. Cohen, “Quantum dynamics in the bosonic Josephson junction,” Phys. Rev., A 82, 053617 (2010).CrossRefGoogle Scholar
  8. 8.
    V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science, 306, 1330 (2004).CrossRefGoogle Scholar
  9. 9.
    D. Jaksch, H.-J. Briegel, J. Cirac, C. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett., 82, 1975 (1999).CrossRefGoogle Scholar
  10. 10.
    L. D. Faddeev, “Quantum completely integrable models of field theory,” in: 40 Years in Mathematical Physics, World Sci. Ser. 20th Century Math., vol. 2, World Sci., Singapore (1995), pp. 187–235.Google Scholar
  11. 11.
    P. P. Kulish and E. K. Sklyanin, “Quantum spectral transform method. Recent developments,” Lecture Notes Phys., 151, Springer (1982), pp. 61–119.Google Scholar
  12. 12.
    V. Z. Enol’skii, V. B. Kuznetsov, and M. Salerno, “On the quantum inverse scattering method for the DST dimer,” Phys., D 68, 138 (1993).MathSciNetGoogle Scholar
  13. 13.
    J. Links and K. Hibberd, “Bethe ansatz solutions of the Bose–Hubbard dimer,” SIGMA 2, Paper 095 (2006).Google Scholar
  14. 14.
    R. Orús, S. Dusuel, and J. Vidal, “Equivalence of critical scaling laws for many-body entanglement in the Lipkin–Meshkov–Glick model,” Phys. Rev. Lett., 101, 025701 (2008).CrossRefGoogle Scholar
  15. 15.
    N. M. Bogoliubov, R. K. Bullough, and J. Timonen, “Exact solution of generalised Tavis-Cummings models in quantum optics,” J. Phys. A, 29, 6305 (1996).CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    N. M. Bogoliubov and P. P. Kulish, “Exactly solvable models of quantum nonlinear optics,” J. Math. Sci., 192, 14 (2013).CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge (1993).CrossRefzbMATHGoogle Scholar
  18. 18.
    I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, Oxford (1995).zbMATHGoogle Scholar
  19. 19.
    N. A. Slavnov, “Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz,” Theor. Math. Phys, 79, 502 (1989).CrossRefMathSciNetGoogle Scholar
  20. 20.
    N. Kitanine, J. M. Maillet, and V. Terras, “Form factors of the XXZ Heisenberg spin-1/2 finite chain,” Nucl. Phys., B 516, 647 (1999).CrossRefMathSciNetGoogle Scholar
  21. 21.
    V. E. Korepin, “Calculation of norms of Bethe wave functions,” Comm. Math. Phys., 86, 391 (1982).CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    M. Hillery and M. Zubairy, “Entanglement conditions for two-mode states,” Phys. Rev. Lett., 96, 050503 (2006).CrossRefMathSciNetGoogle Scholar
  23. 23.
    Q. He, M. Reid, T. Vaughan, C. Gross, M. Oberthaler, and P. Drummond, “Einstein–Podolsky–Rosen entanglement strategies in two-well Bose–Einstein condensates,” Phys. Rev. Lett., 106, 120405 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.St.Petersburg Department of the Steklov Mathematical InstituteITMO UniversitySt.PetersburgRussia

Personalised recommendations