Journal of Mathematical Sciences

, Volume 208, Issue 5, pp 571–592 | Cite as

Oscillation Criteria for the First-Order Linear Difference Equations with Several Delay Arguments

  • R. Koplatadze
  • S. Pinelas

We consider a difference equation with delayed arguments


Difference Equation Delay Differential Equation Oscillation Theory Proper Solution Oscillation Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Ladas and I. P. Stavroulakis, “Oscillations caused by several retarded and advanced arguments,” J. Different. Equat., 44, No. 1, 134–152 (1982).MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    R. G. Koplatadze and T. A. Chanturiya, “Oscillating and monotone solutions of the first-order differential equations with deviating argument,” Differents. Uravn. 18, No. 8, 1463–1465 (1982).MATHMathSciNetGoogle Scholar
  3. 3.
    F. Nobuyoshi and K. Takasi, “Oscillation theory of first order functional-differential equations with deviating arguments,” Ann. Mat. Pura Appl., 136, No. 4, 95–117 (1984).MATHMathSciNetGoogle Scholar
  4. 4.
    A. Elbert and I. P. Stavroulakis, “Oscillation and nonoscillation criteria for delay differential equations,” Proc. Amer. Math. Soc., 123, No. 5, 1503–1510 (1995).MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Ladde G. S., V. Lakshmikantham, and B. G. Zhang, “Oscillation theory of differential equations with deviating arguments,” in: Monographs and Textbooks in Pure and Appl. Math., Marcel Dekker, Inc. New York (1987), 110.Google Scholar
  6. 6.
    R. Koplatadze andG. Kvinikadze, “On the oscillation of solutions of first-order delay differential inequalities and equations,” Georg. Math. J., 1, No. 6, 675–685 (1994)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    L. Berezansky and E. Braverman, “On some constants for oscillation and stability of delay equations,” Proc. Amer. Math. Soc., 139, No. 11, 4017–4026 (2011).MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    E. Braverman and B. Karpuz, “On oscillation of differential and difference equations with nonmonotone delays,” Appl. Math. Comput., 218, No. 7, 3880–3887 (2011).MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    G. Ladas, Ch. G. Philos, and Y. G. Sficas, “Sharp conditions for the oscillation of delay difference equations,” J. Appl. Math. Simul., 2, No. 2, 101–111 (1989).MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    I. P. Stavroulakis, “Oscillations of delay difference equations,” Comput. Math. Appl., 29, No. 7, 83–88 (1995).MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    G. E. Chatzarakis, R. Koplatadze, and I. P. Stavroulakis, “Oscillation criteria of first order linear difference equations with delay argument,” Nonlin. Anal., 68, No. 4, 994–1005 (2008).MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    G. E. Chatzarakis, R. Koplatadze, and I. P. Stavroulakis, “Optimal oscillation criteria for first order difference equations with delay argument,” Pacif. J. Math., 235, No. 1, 15–33 (2008).MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    R. Koplatadze, G. Kvinikadze, and I. P. Stavroulakis, “Oscillation of second-order linear difference equations with deviating arguments,” Adv. Math. Sci. Appl., 12, No. 1, P. 217–226 (2002).MATHMathSciNetGoogle Scholar
  14. 14.
    R. Koplatadze, “On oscillatory properties of solutions of functional-differential equations,” in: Mem. Different. Equat. Math. Phys., 3 (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Javakhishvili Tbilisi State Univ.TbilisiGeorgia
  2. 2.Academia MilitarDepartamento de Ciˆencias Exactas e Naturais Av. Conde Castro GuimarâesAmadoraPortugal

Personalised recommendations