Advertisement

Journal of Mathematical Sciences

, Volume 207, Issue 4, pp 513–537 | Cite as

Almost Contact Metric Structures on the Hypersurface of Almost Hermitian Manifolds

  • M. B. Banaru
  • V. F. Kirichenko
Article

Keywords

Manifold Real Hypersurface Einstein Manifold Contact Manifold Sasakian Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    A. Abu-Saleem and M. Banaru, “Some applications of Kirichenko tensors,” An. Univ. Oradea, Fasc. Mat., 17, No. 2, 201–208 (2010).zbMATHMathSciNetGoogle Scholar
  2. 2.
    T. Adachi, M. Kameda, and S. Maeda, “Real hypersurfaces which are contact in a nonflat complex space form,” Hokkaido Math. J., 40, 205–217 (2011).zbMATHMathSciNetGoogle Scholar
  3. 3.
    P. Alegre, “Semi-invariant submanifolds of Lorentzian Sasakian manifolds,” Demonstr. Math., 44, No. 2, 391–406 (2011).zbMATHMathSciNetGoogle Scholar
  4. 4.
    V. Apostolov, G. Ganchev, and S. Inanov, “Compact Hermitian surfaces of constant antiholomorphic curvature,” Proc. Am. Math. Soc., 125, 3705–3714 (1997).zbMATHGoogle Scholar
  5. 5.
    V. I. Arnold, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1989).Google Scholar
  6. 6.
    K. Arslan, U. C. De, C. Ozgur, and J.-B. Jun, “On a class of Sasakian manifolds,” Nihonkai Math. J., 19, 21–27 (2008).zbMATHMathSciNetGoogle Scholar
  7. 7.
    C. S. Bagewadi and E. Girish Kumar, “Note on trans-Sasakian manifolds,” Tensor (N.S.), 65, 80–88 (2004).zbMATHMathSciNetGoogle Scholar
  8. 8.
    C. S. Bagewadi and V. S. Prasada, “Note on Kenmotsu manifolds,” Bull. Calcutta Math. Soc., 91, 379–384 (1999).zbMATHMathSciNetGoogle Scholar
  9. 9.
    M. B. Banaru, A new characterization of the classes of almost Hermitian Gray–Hervella structures [in Russian], preprint, Smolensk. State Pedagogical Institute (1992). Deposited at the All-Russian Institute for Scientific and Technical Information (VINITI), Moscow, No. 3334-B92.Google Scholar
  10. 10.
    M. B. Banaru, “Gray–Hervella classes of almost Hermitian structures on 6-dimensional submanifolds of the Cayley algebra,” in: Nauch. Tr. MGPU im. V. I. Lenina, Prometey, Moscow (1994), pp. 36–38.Google Scholar
  11. 11.
    M. B. Banaru “On spectra of the most important tensors of 6-dimensional Hermitian submanifolds of the Cayley algebra,” in: The Newest Problems of the Field Theory [in Russian], Kazan’ (2000), pp. 18–22.Google Scholar
  12. 12.
    M. B. Banaru, “The axiom of g-cosymplectic hypersurfaces for 6-dimensional Hermitian submanifolds of the octave algebra,” in: Boundary-Value Problems in Complex Analysis and Differential Equations, Vol. 2, Smolensk (2000), pp. 36–41.Google Scholar
  13. 13.
    M. Banaru, “Six theorems on six-dimensional Hermitian submanifolds of Cayley algebra,” Izv. Akad. Nauk Resp. Moldova, Ser. Mat., 3 (34), 3–10 (2000).Google Scholar
  14. 14.
    M. B. Banaru, “On six-dimensional Hermitian submanifolds of Cayley algebras satisfying the g-cosymplectic hypersurfaces axiom,” Ann. Univ. Sofia Fac. Math. Inform., 94, 91–96 (2000).MathSciNetGoogle Scholar
  15. 15.
    M. B. Banaru, “On the geometry of cosymplectic hypersurfaces of 6-dimensional submanifolds of the Cayley algebra,” in: Proc. Int. Conf. “Volga-2001” (Perovskii Readings), Kazan’ (2001), p. 25.Google Scholar
  16. 16.
    M. B. Banaru, “Two theorems on cosymplectic hypersurfaces of six-dimensional Hermitian submanifolds of Cayley algebra,” J. Harbin Inst. Tech., 8, No. 1, 38–40 (2001).Google Scholar
  17. 17.
    M. B. Banaru, “A new characterization of the Gray—Hervella classes of almost Hermitian manifolds,” in: Proc. 8th Int. Conf. on Differential Geometry and Its Applications, Opava, Czech Republic (2001), p. 4.Google Scholar
  18. 18.
    M. B. Banaru, “On the geometry of 6-dimensional Hermitian submanifolds of Cayley algebras,” in: Invariant Methods of the Study of Structures on Manifolds in Geometry, Analysis, and Mathematical Physics [in Russian] (L. E. Evtushik and A. K. Rybnikov, eds.), 1, Moscow (2001), pp. 16–20.Google Scholar
  19. 19.
    M. B. Banaru, “Two theorems on cosymplectic hypersurfaces of six-dimensional Kählerian submanifolds of Cayley algebras,” Bul. Ştiinţ. Univ. Politeh. Timiş., 46, No. 2, 13–17 (2001).MathSciNetGoogle Scholar
  20. 20.
    M. B. Banaru, “Some theorems on cosymplectic hypersurfaces of six-dimensional Hermitian submanifolds of Cayley algebras,” Mat. Vesn. (Bull. Math. Soc. Serbia), 53, Nos. 3-4, 103–110 (2001).zbMATHMathSciNetGoogle Scholar
  21. 21.
    M. B. Banaru, “On W 3-manifolds satisfying the axiom of G-cosymplectic hypersurfaces,” Proc. XXIV Conf. Young Scientists, Moscow State Univ., Moscow (2002),pp. 15–19.Google Scholar
  22. 22.
    M. B. Banaru, “Two theorems on cosymplectic hypersurfaces of 6-dimensional Hermitian submanifolds of Cayley algebras,” Izv. Vyssh. Uchebn. Zaved. Ser. Mat., 1 (476), 9–12 (2002).MathSciNetGoogle Scholar
  23. 23.
    M. B. Banaru, “On the typical number of cosymplectic hypersurfaces of a 6-dimensional Kählerian submanifold of the Cayley algebra,” in: Proc. X Int. Conf. “Mathematics. Economics. Education,” and II Int. Symp. “Fourier Series and Their Applications,” Rostov-on-Don (2002), pp. 116–117.Google Scholar
  24. 24.
    M. B. Banaru, “On spectra of some tensors of six-dimensional Kählerian submanifolds of Cayley algebras,” Stud. Univ. Babeş-Bolyai. Math., 47, No. 1, 11–17 (2002).zbMATHMathSciNetGoogle Scholar
  25. 25.
    M. B. Banaru, “On Kenmotsu hypersurfaces in six-dimensional Hermitian submanifolds of Cayley algebras,” in: Proc. Int. Conf. “Contemporary Geometry and Related Topics,” Beograd (2002), p. 5.Google Scholar
  26. 26.
    M. Banaru, “On nearly-cosymplectic hypersurfaces in nearly-Kählerian manifolds,” Stud. Univ. Babeş-Bolyai Math., 47, No. 3, 3–11 (2002).MathSciNetGoogle Scholar
  27. 27.
    M. B. Banaru, “Six-dimensional Hermitian submanifolds of Cayley algebras and u-Sasakian hypersurfaces axiom,” Izv. Akad. Nauk Resp. Moldova. Ser. Mat., 2 (39), 71–76 (2002).MathSciNetGoogle Scholar
  28. 28.
    M. B. Banaru, “On totally umbilical cosymplectic hypersurfaces of six-dimensional Hermitian submanifolds of Cayley algebras,” Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 41, 7–12 (2002).zbMATHMathSciNetGoogle Scholar
  29. 29.
    M. Banaru, “On minimality of a Sasakian hypersurfaces in a W 3-manifold,” Saitama Math. J., 20, 1–7 (2002).zbMATHMathSciNetGoogle Scholar
  30. 30.
    M. B. Banaru, “Hermitian geometry of 6-dimensional submanifolds of Cayley algebras,” Mat. Sb., 193, No. 5, 3–16 (2002).MathSciNetGoogle Scholar
  31. 31.
    M. B. Banaru, “On the similarity and dissimilarity of the properties of Kenmotsu and Sasaki hypersurfaces of special Hermitian manifolds,” in: Proc. X Military-Scientific Conf., Smolensk (2002), p. 196.Google Scholar
  32. 32.
    M. B. Banaru, “On W 4-manifolds satisfying the axiom of G-cosymplectic hypersurfaces,” in: Proc. Int. Sci. Conf. “Volga-2001” (Perovskii Readings), Kazan’ (2002), p. 16.Google Scholar
  33. 33.
    M. B. Banaru, “On the typical number of weakly cosymplectic hypersurfaces of approximately Kählerian manifolds,” Fundam. Prikl. Mat., 8, No. 2, 357–364 (2002).zbMATHMathSciNetGoogle Scholar
  34. 34.
    M. B. Banaru, “On Hermitian manifolds satisfying the axiom of U-cosymplectic hypersurfaces,” Fundam. Prikl. Mat., 8, No. 3, 943–947 (2002).zbMATHMathSciNetGoogle Scholar
  35. 35.
    M. B. Banaru, “On the geometry of weakly cosymplectic hypersurfaces of NK-manifolds,” in: Proc. Int. Semin. on Geometry and Analysis to the Memory of Prof. N. V. Efimov, Rostov-on-Don (2002), pp. 18–19.Google Scholar
  36. 36.
    M. B. Banaru, “On cosymplectic hypersurfaces of 6-dimensional Kählerian submanifolds of the Cayley algebra,” Izv. Vyssh. Ucheb. Zaved. Ser. Mat., 7 (494), 59–63 (2003).MathSciNetGoogle Scholar
  37. 37.
    M. B. Banaru, “On the geometry of cosymplectic hypersurfaces of 6-dimensional Hermitian submanifolds of the Cayley algebra,” in: The Newest Problems of the Field Theory [in Russian], Kazan’ (2003), pp. 38–43.Google Scholar
  38. 38.
    M. B. Banaru, “On eight Gray–Hervella classes of almost Hermitian structures realized on 6-dimensional submanifolds of the Cayley algebra,” in: The Newest Problems of the Field Theory [in Russian], Kazan’ (2003), pp. 44–50.Google Scholar
  39. 39.
    M. B. Banaru, “On W 4-manifolds satisfying the axiom of G-cosymplectic hypersurfaces,” in: The Newest Problems of the Field Theory [in Russian], Kazan’ (2003), pp. 51–55.Google Scholar
  40. 40.
    M. Banaru, “Hermitian manifolds and U-cosymplectic hypersurfaces axiom,” J. Sichuan Normal Univ. Nat. Sci. Ed., 26, No. 3, 261–263 (2003).zbMATHMathSciNetGoogle Scholar
  41. 41.
    M. B. Banaru, “A note on Kirichenko tensors,” in: The Newest Problems of the Field Theory [in Russian], Kazan’ (2003), pp. 56–62.Google Scholar
  42. 42.
    M. B. Banaru, “On Sasakian hypersurfaces of 6-dimensional Hermitian submanifolds of the Cayley algebra,” Mat. Sb., 194, No. 8, 13–24 (2003).MathSciNetGoogle Scholar
  43. 43.
    M. B. Banaru, “On the typical number of cosymplectic hypersurfaces of 6-dimensional Hermitian submanifolds of the Cayley algebra,” Sib. Mat. Zh., 44, No. 5, 981–991 (2003).zbMATHMathSciNetGoogle Scholar
  44. 44.
    M. B. Banaru, “On almost contact metric structures on hypersurfaces of 6-dimensional Kählerian submanifolds of the octave algebra,” in: Actual Problems of Mathematical Physics [in Russian], Prometey, Moscow (2003), pp. 40–41.Google Scholar
  45. 45.
    M. B. Banaru, “On Kenmotsu hypersurfaces of 6-dimensional Hermitian submanifolds of Cayley algebras,” in: Differential Geometry of Manifolds of Figures [in Russian], 34, Kaliningrad State Univ., Kaliningrad (2003), pp. 12–21.Google Scholar
  46. 46.
    M. B. Banaru, “On Kenmotsu hypersurfaces of special Hermitian manifolds,” Sib. Mat. Zh., 45, No. 1, 11–15 (2004).zbMATHMathSciNetGoogle Scholar
  47. 47.
    M. B. Banaru, “On typical numbers of almost contact metric hypersurfaces of almost Hermitian submanifolds,” in: Proc. VIII Int. Semin. “Discrete Mathematics and Its Applications,” Moscow State Univ., Moscow (2004), pp. 379–381.Google Scholar
  48. 48.
    M. B. Banaru, “On Sasakian hypersurfaces of special Hermitian manifolds,” in: Proc. XXV Conf. Young Scientists, Moscow State Univ., Moscow (2004), pp. 11–14.Google Scholar
  49. 49.
    M. Banaru, “On cosymplectic hypersurfaces in a Kählerian manifold,” in: Proc. Int. Conf. on Mathematics and Its Applications, Kuwait (2004), pp. 62–63.Google Scholar
  50. 50.
    M. Banaru, “On Kenmotsu hypersurfaces in a six-dimensional Hermitian submanifold of Cayley algebras,” Proc. of the Workshop “Contemporary Geometry and Related Topics,” Belgrade, Yugoslavia May 15–21, 2002, World Scientific, Singapore (2004), pp. 33–40.Google Scholar
  51. 51.
    M. B. Banaru, “On the Gray–Hervella classes of AH-structures on six-dimensional submanifolds of Cayley algebras,” Ann. Univ. Sofia Fac. Math. Inform., 95, 125–131 (2004).zbMATHMathSciNetGoogle Scholar
  52. 52.
    M. B. Banaru, “On the axiom of Kenmotsu u-hypersurfaces for special Hermitian manifolds,” in: Proc. XIII Military-Sci. Conf., Smolensk (2005), pp. 224–225.Google Scholar
  53. 53.
    M. B. Banaru, “On some almost contact metric hypersurfaces in six-dimensional special Hermitian submanifolds of Cayley algebras,” Proc. Int. Conf. “Selected Questions of Contemporary Mathematics” Dedicated to the 200th Anniversary of C. Jacobi, Kaliningrad (2005), pp. 6.Google Scholar
  54. 54.
    M. B. Banaru, “On almost contact metric structures on hypersurfaces of almost Hermitian manifolds of the classes W 3 and W 4,” in: Proc. Rep. Int. Conf. “A. Z. Petrov Anniversary Symposium on General Relativity and Gravitation,” Kazan’ , November 1–6, 2010, Kazan’ (2010), pp. 41–42.Google Scholar
  55. 55.
    M. B. Banaru and V. F. Kirichenko, “Hermitian geometry of 6-dimensional submanifolds of the Cayley algebra,” Usp. Mat. Nauk, 1, 205–206 (1994).MathSciNetGoogle Scholar
  56. 56.
    A. Bejancu and H. R. Farran, “On totally umbilical QR-submanifolds of quaternion Kählerian manifolds,” Bull. Austr. Math. Soc., 62, 95–103 (2000).zbMATHMathSciNetGoogle Scholar
  57. 57.
    F. Belgun, A. Moroianu, and U. Semmelmann, “Symmetries of contact metric manifolds,” Ceom. Dedic., 101, 203–216 (2003).zbMATHMathSciNetGoogle Scholar
  58. 58.
    A. Besse, Einstein Manifolds, Springer-Verlag, Berlin etc. (1987).zbMATHGoogle Scholar
  59. 59.
    A. M. Blaga, “Affine connections on almost para-cosymplectic manifolds,” Czechoslovak Math. J., 61 (138), 863–871 (2011).zbMATHMathSciNetGoogle Scholar
  60. 60.
    D. E. Blair, “The theory of quasi-Sasakian structures,” J. Differ. Geom., 1, 331–345 (1967).zbMATHMathSciNetGoogle Scholar
  61. 61.
    D. E. Blair, Contact Manifolds in Riemannian Geometry, Lect. Notes Math., 509 (1976).Google Scholar
  62. 62.
    D. E. Blair, “Two remarks on contact metric structure,” Tôhoku Math. J., 29, 319–324 (1977).zbMATHMathSciNetGoogle Scholar
  63. 63.
    D. E. Blair, “A hyperbolic twistor space,” Balkan J. Geom. Appl., 5, 9–16 (2000).zbMATHMathSciNetGoogle Scholar
  64. 64.
    D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progr. Math., Birkhäuser, Boston–Basel–Berlin (2002).zbMATHGoogle Scholar
  65. 65.
    D. E. Blair, “A product twistor space,” Serdica Math. J., 28, 163–174 (2002).zbMATHMathSciNetGoogle Scholar
  66. 66.
    D. E. Blair, J. S. Kim, and M. M. Tripathi, “On the concircular curvature tensor of a contact metric manifold,” J. Korean Math. Soc., 42, No. 5, 883–892 (2005).zbMATHMathSciNetGoogle Scholar
  67. 67.
    D. E. Blair, D. K. Showers, and K. Yano, “Nearly Sasakian structures,” Kodai Math. Semin. Repts., 27, 175–180 (1976).zbMATHMathSciNetGoogle Scholar
  68. 68.
    D. Borthwick and A. Uribe, “Almost complex structures and geometric quantization,” Math. Res. Lett., 3, 845–861 (1996).zbMATHMathSciNetGoogle Scholar
  69. 69.
    R. L. Bryant, “Submanifolds and special structures on the octonions,” J. Differ. Geom., 17, 185–232 (1982).zbMATHGoogle Scholar
  70. 70.
    C. Calin, “On the geometry of hypersurfaces in a quasi-Sasakian manifold,” Demonstr. Math., 36, No. 2, 451–462 (2003).zbMATHMathSciNetGoogle Scholar
  71. 71.
    C. Calin, “Kenmotsu manifolds with η-parallel Ricci tensor,” Bull. Soc. Math. Banja Luka, 10, 10–15 (2003).zbMATHMathSciNetGoogle Scholar
  72. 72.
    C. Calin, Subvarietati in varietati aproape de contact, Performantica, Iasi (2005).zbMATHGoogle Scholar
  73. 73.
    J. T. Cho, “A new class of contact Riemannian manifolds,” Isr. J. Math., 109, 299–318 (1999).zbMATHGoogle Scholar
  74. 74.
    J. T. Cho, “Ricci solitons and odd-dimensional spheres,” Monatsh. Math., 160, 347–357 (2010).zbMATHMathSciNetGoogle Scholar
  75. 75.
    T. Choi and Z. Lu, “On the DDVV conjecture and comass in calibrated geometry, I,” Math. Z., 260, 409–429 (2008).zbMATHMathSciNetGoogle Scholar
  76. 76.
    E. Cartan, Riemannian Geometry in an Orthogonal Frame [Russian translation], Moscow State Univ., Moscow (1960).Google Scholar
  77. 77.
    U. C. De and G. Pathak, “Torseforming vector fields in a Kenmotsu manifold,” An. Ştinţ. Univ. Al. I. Cuza, Iaşi, 49, No. 2, 257–264 (2003).zbMATHMathSciNetGoogle Scholar
  78. 78.
    U. C. De and G. Pathak, “On 3-dimensional Kenmotsu manifolds,” Indian J. Pure Appl. Math., 35, No. 2, 159–165 (2004).zbMATHMathSciNetGoogle Scholar
  79. 79.
    U. C. De and Avijit Sarkar, “On ϕ-Ricci symmetric Sasakian manifolds,” Proc. Jangjeon Math. Soc., 11, 47–52 (2008).zbMATHMathSciNetGoogle Scholar
  80. 80.
    U. C. De, A. A. Shaikh, and Biswas Sudipta, “On Φ-recurrent Sasakian manifolds,” Novi Sad J. Math., 33, No. 2, 43–48 (2003).zbMATHMathSciNetGoogle Scholar
  81. 81.
    U. C. De, A. A. Shaikh, and Biswas Sudipta, “On weakly symmetric contact metric manifolds,” Tensor (N.S.), 64, 170–175 (2003).zbMATHMathSciNetGoogle Scholar
  82. 82.
    R. Deszcz and M. Hotlos, “On hypersurfaces with type number two in spaces of constant curvature,” Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 46, 19–34 (2003).zbMATHMathSciNetGoogle Scholar
  83. 83.
    G. Dileo, “A classification of certain almost α-Kenmotsu manifolds,” Kodai Math. J., 44, 426–445 (2011).MathSciNetGoogle Scholar
  84. 84.
    G. Dileo and A. M. Pastore, “Almost Kenmotsu manifolds and local symmetry,” Bull. Belg. Math. Soc. Simon Stevin., 14, 343–354 (2007).zbMATHMathSciNetGoogle Scholar
  85. 85.
    G. Dileo and A. M. Pastore, “Almost Kenmotsu manifolds and nullity distributions,” J. Geom., 93, 46–61 (2009).zbMATHMathSciNetGoogle Scholar
  86. 86.
    G. Dileo and A. M. Pastore, “Almost Kenmotsu manifolds with a condition of η-parallelism,” Differ. Geom. Appl., 27, 671–679 (2009).zbMATHMathSciNetGoogle Scholar
  87. 87.
    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Contemporary Geometry. Methods and Applications [in Russian], Nauka, Moscow (1986).Google Scholar
  88. 88.
    N. Ejiri, “Totally real submanifolds in a 6-sphere,” Proc. Am. Math. Soc., 83, 759–763 (1981).zbMATHMathSciNetGoogle Scholar
  89. 89.
    H. Endo, “On the curvature tensor of nearly cosymplectic manifolds of constant Φ-sectional curvature,” An. Ştinţ. Univ. Al. I. Cuza, Iaşi, 51, No. 2, 439–454 (2005).zbMATHMathSciNetGoogle Scholar
  90. 90.
    H. Endo, “Remarks on nearly cosymplectic manifolds of constant Φ-sectional curvature with a submersion of geodesic fibres,” Tensor (N.S.), 66, 26–39 (2005).zbMATHMathSciNetGoogle Scholar
  91. 91.
    H. Endo, “On nearly cosymplectic manifolds of constant Φ-sectional curvature,” Tensor (N.S.), 67, 323–335 (2006).zbMATHMathSciNetGoogle Scholar
  92. 92.
    H. Endo, “Some remarks of nearly cosymplectic manifolds of constant Φ-sectional curvature,” Tensor (N.S.), 68, 204–221 (2007).zbMATHMathSciNetGoogle Scholar
  93. 93.
    H. Freudenthal, Oktaven, Ausnahmegruppen und Oktavengeometrie, Mathematisch Instituut der Rijksuniversiteit te Utrecht (1951).Google Scholar
  94. 94.
    S. Fueki and H. Endo, “On conformally flat nearly cosymplectic manifolds,” Tensor (N.S.), 66, 305–316 (2005).zbMATHMathSciNetGoogle Scholar
  95. 95.
    S. Funabashi and J. S. Pak, “Tubular hypersurfaces of the nearly Kähler 6-sphere,” Saitama Math. J., 19, 13–36 (2001).zbMATHMathSciNetGoogle Scholar
  96. 96.
    G. Gheorghiev and V. Oproiu, Varietati diferentiabile finit si infinit dimensionale, Bucuresti Acad. RSR (1976–1979).Google Scholar
  97. 97.
    C. Gherghe, “Harmonic maps on Kenmotsu manifolds,” Rev. Roumaine Math. Pures Appl., 45, No. 3, 447–453 (2000).zbMATHMathSciNetGoogle Scholar
  98. 98.
    A. Ghosh, “Kenmotsu 3-metric as a Ricci soliton,” Chaos Solitons Fractals, 44, 647–650 (2011).zbMATHMathSciNetGoogle Scholar
  99. 99.
    S. Goldberg, “Totally geodesic hypersurfaces of Kähler manifolds,” Pac. J. Math., 27, No. 2, 275–281 (1968).zbMATHGoogle Scholar
  100. 100.
    S. Goldberg and K. Yano, “Integrability of almost cosymplectic structures,” Pac. J. Math., 31, No. 2, 373–382 (1969).zbMATHMathSciNetGoogle Scholar
  101. 101.
    F. Gouli-Andreou and N. Tsolakidou, “On conformally flat contact metric manifolds,” J. Geom., 79, 75–88 (2004).zbMATHMathSciNetGoogle Scholar
  102. 102.
    A. Gray and L. M. Hervella, “The sixteen classes of almost Hermitian manifolds and their linear invariants,” Ann. Mat. Pura Appl., 123, No. 4, 35–58 (1980).zbMATHMathSciNetGoogle Scholar
  103. 103.
    R. S. Gupta, S. M. K. Haider, and M. N. Shahid, “Slant submanifolds of cosymplectic manifolds,” An. Ştinţ. Univ. Al. I. Cuza, Iaşi, 50, No. 1, 33–50 (2004).zbMATHMathSciNetGoogle Scholar
  104. 104.
    R. S. Gupta and A. Sharfuddin, “Screen transversal lightlike submanifolds of indefinite Kenmotsu manifolds,” Sarajevo J. Math., 7 (19), 103–113 (2011).MathSciNetGoogle Scholar
  105. 105.
    T. Hamada and J. Inoguchi, “Ruled real hypersurfaces of complex space forms,” Kodai Math. J., 33, 123–134 (2010).zbMATHMathSciNetGoogle Scholar
  106. 106.
    Y. Hatakeyama, Y. Ogawa, and S. Tanno, “Some properties of manifolds with contact metric structures,” Tˆohoku Math. J., 15, 42–48 (1963).zbMATHMathSciNetGoogle Scholar
  107. 107.
    L. Hernandez-Lamoneda, “Curvature vs. almost Hermitian structure,” Geom. Dedic., 79, 205–218 (2000).zbMATHMathSciNetGoogle Scholar
  108. 108.
    M. Hristov, “On the locally quasi-Sasakian manifolds,” C. R. Acad. Bulgare Sci., 56, No. 2, 9–14 (2003).zbMATHMathSciNetGoogle Scholar
  109. 109.
    N. E. Hurt, Geometric Quantization in Action. Applications of Harmonic Analysis in Quantum Statistical Mechanics and Quantum Field Theory, Math. Appl., 8, Reidel Publ., Dordrecht–Boston–London (1983).Google Scholar
  110. 110.
    S. Ianus, “Submanifolds of almost Hermitian manifolds,” Riv. Mat. Univ. Parma, 3, 123–142 (1994).zbMATHMathSciNetGoogle Scholar
  111. 111.
    S. Ianus, Geometrie Diferentiala cu Aplicatii in Teoria Relativitatii, Editura Academiei Romane, Bucureşti (1983).Google Scholar
  112. 112.
    N. Jamal, K. A. Khan, and V. A. Khan, “Generic warped product submanifolds of locally conformal Kähler manifolds, Acta Math. Sci., 30B, No. 1605, 1457–1468 (2010).MathSciNetGoogle Scholar
  113. 113.
    D. Janssens and L. Vanhecke, “Almost contact structures and curvature tensors,” Kodai Math. J., 4, 1–27 (1981).zbMATHMathSciNetGoogle Scholar
  114. 114.
    J. Jost, Riemannian Geometry and Geometric Analysis, Springer-Verlag, Berlin–Heidelberg–New York (2003).Google Scholar
  115. 115.
    K. Kenmotsu, “A class of almost contact Riemannian manifolds,” Tôhoku Math. J., 24, 93–103 (1972).zbMATHMathSciNetGoogle Scholar
  116. 116.
    Q. Khan, “On an Einstein projective Sasakian manifold,” İstanbul Üniv. Fen Fak. Mat. Derg., 61–62, 97–103 (2002–2003).Google Scholar
  117. 117.
    H. S. Kim, I.-B. Kim, and R. Takagi, “Extrinsically homogeneous real hypersurfaces with three distinct principal curvatures in H n(C),” Osaka J. Math., 41, 853–863 (2004).zbMATHMathSciNetGoogle Scholar
  118. 118.
    H. S. Kim and R. Takagi, “The type number of real hypersurfaces in P n(C),” Tsukuba J. Math., 20, 349–356 (1996).zbMATHMathSciNetGoogle Scholar
  119. 119.
    V. F. Kirichenko, “Almost Kählerian structures induced by 3-vector products on 6-dimensional submanifolds of the Cayley algebra,” Vestn. MGU, Ser. Mat. Mekh., 3, 70–75 (1973).Google Scholar
  120. 120.
    V. F. Kirichenko, “A classification of Kählerian structures induced by 3-vector products on 6-dimensional submanifolds of the Cayley algebra,” Izv. Vyssh. Ucheb. Zaved. Ser. Mat., 8, 32–38 (1980).MathSciNetGoogle Scholar
  121. 121.
    V. F. Kirichenko, “The stability of almost Hermitian structures induced by 3-vector products on 6-dimensional submanifolds of the Cayley algebra,” Ukr. Geom. Sb., 25, 60–68 (1982).zbMATHMathSciNetGoogle Scholar
  122. 122.
    V. F. Kirichenko, “The methods of the generalized Hermitian geometry in the theory of almost contact manifolds,” in: Itogi Nauki Tekhn. Probl. Geom., 18, All-Union Institute for Scientific and Technical Information (VINITI), Moscow (1986), pp. 25–71.Google Scholar
  123. 123.
    V. F. Kirichenko, “Hermitian geometry of 6-dimensional symmetric submanifolds of the Cayley algebra,” Vestn. MGU, Ser. Mat. Mekh., 3, 6–13 (1994).MathSciNetGoogle Scholar
  124. 124.
    V. F. Kirichenko, “Differential geometry of principal toroidal bundles,” Fundam. Prikl. Mat., 6, No. 4, 1095–1120 (2000).zbMATHMathSciNetGoogle Scholar
  125. 125.
    V. F. Kirichenko, “On the geometry of Kenmotsu manifolds,” Dokl. Ross. Akad. Nauk, 380, No. 5, 585–587.Google Scholar
  126. 126.
    V. F. Kirichenko, Differential-Geometric Structures on Manifolds, [in Russian], Moscow (2003).Google Scholar
  127. 127.
    V. F. Kirichenko and E. V. Rodina, “On the geometry of trans-Sasakian and almost trans-Sasakian manifolds,” Fundam. Prikl. Mat., 3, No. 3, 837–846 (1997).zbMATHMathSciNetGoogle Scholar
  128. 128.
    V. F. Kirichenko and A. R. Rustanov, “Differential geometry of quasi-Sasakian manifolds,” Mat. Sb., 193, No. 8, 71–100 (2002).MathSciNetGoogle Scholar
  129. 129.
    V. F. Kirichenko and L. V. Stepanova, “On the geometry of hypersurfaces of quasi-Kählerian manifolds,” Usp. Mat. Nauk, 2, 213–214 (1995).MathSciNetGoogle Scholar
  130. 130.
    V. F. Kiritchenko, “Sur la gèomètrie des variètès approximativement cosymplectiques,” C. R. Acad. Sci. Paris, Ser. 1, 295, No. 12, 673–676 (1982).zbMATHMathSciNetGoogle Scholar
  131. 131.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, Interscience Publ., New York–London (1963).zbMATHGoogle Scholar
  132. 132.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 2, Interscience Publ., New York–London (1969).zbMATHGoogle Scholar
  133. 133.
    M. Kon, “Invariant submanifolds in Sasakian manifolds,” Math. Ann., 219, 277–290 (1976).zbMATHMathSciNetGoogle Scholar
  134. 134.
    M. Kon, “Hypersurfaces with almost complex structures in the real affine space,” Colloq. Math., 108, No. 2, 329–338 (2007).zbMATHMathSciNetGoogle Scholar
  135. 135.
    T. Korpinar and E. Turhan, “Weierstrass formula for minimal surface in the special three-dimensional Kenmotsu manifold with η-parallel Ricci tensor,” Int. J. Math. Combin., 4, 62–69 (2010).MathSciNetGoogle Scholar
  136. 136.
    H. Kurihara, “On real hypersurfaces in a complex space form,” Math. J. Okayama Univ., 40, 177–186 (1998).MathSciNetGoogle Scholar
  137. 137.
    H. Kurihara, “The type number on real hypersurfaces in a quaternionic space form,” Tsukuba J. Math., 24, 127–132 (2000).zbMATHMathSciNetGoogle Scholar
  138. 138.
    H. Kurihara and R. Takagi, “A note on the type number of real hypersurfaces in P n(C),” Tsukuba J. Math., 22, 793–802 (1998).MathSciNetGoogle Scholar
  139. 139.
    G. F. Laptev, “Fundamental higher-order infinitesimal structures on smooth manifolds,” in: Tr. Geom. Semin., 1, All-Union Institute for Scientific and Technical Information (VINITI), Moscow (1966), pp. 139–189.Google Scholar
  140. 140.
    H. Li, “The Ricci curvature of totally real 3-dimensional submanifolds of the nearly Kaehler 6-sphere,” Bull. Belg. Math. Soc. Simon Stevin., 3, 193–199 (1996).zbMATHMathSciNetGoogle Scholar
  141. 141.
    H. Li and G. Wei, “Classification of Lagrangian Willmore submanifolds of the nearly Kähler 6-sphere S6 1 with constant scalar curvature,” Glasgow Math. J., 48, 53–64 (2006).MathSciNetGoogle Scholar
  142. 142.
    M. Manev, “Classes of real isotropic hypersurfaces of a Kähler manifold with B-metric,” C. R. Acad. Bulgare Sci., 55, No. 4, 27–32 (2002).zbMATHMathSciNetGoogle Scholar
  143. 143.
    M. Manev, “Classes of real time-like hypersurfaces of a Kaehler manifold with B-metric,” J. Geom., 75, Nos. 1-2 113–122 (2002).zbMATHMathSciNetGoogle Scholar
  144. 144.
    K. Matsumoto and I. Mihai, “Warped product submanifolds in Sasakian space forms,” SUT J. Math., 38, No. 2, 135–144 (2002).zbMATHMathSciNetGoogle Scholar
  145. 145.
    K. Matsumoto, I. Mihai, and A. Oiaga, “Ricci curvature of submanifolds in complex space forms,” Rev. Roumaine Math. Pures Appl., 46, 775–782 (2002).MathSciNetGoogle Scholar
  146. 146.
    K. Matsumoto, I. Mihai, and R. Rosca, “A certain locally conformal almost cosymplectic manifold and its submanifolds,” Tensor (N.S.), 64, 295–296 (2003).MathSciNetGoogle Scholar
  147. 147.
    P. Matzeu and M.-I. Munteanu, “Vector cross products and almost contact structures,” Rend. Mat. Appl., 22, 359–376 (2002).zbMATHMathSciNetGoogle Scholar
  148. 148.
    I. Mihai, “Ricci curvature of submanifolds in Sasakian space forms,” J. Austr. Math. Soc., 72, 247–256 (2002).zbMATHMathSciNetGoogle Scholar
  149. 149.
    A. S. Mishchenko and A. T. Fomenko, A Course in Differential Geometry and Topology [in Russian], Moscow (1980).Google Scholar
  150. 150.
    R. S. Mishra, “Almost complex and almost contact submanifolds,” Tensor (N.S.), 51, 91–102 (1992).MathSciNetGoogle Scholar
  151. 151.
    R. S. Mishra, “Normality of the hypersurfaces of almost Hermite manifolds,” J. Indian Math. Soc., 61, 71–79 (1995).zbMATHMathSciNetGoogle Scholar
  152. 152.
    A. Moroianu, “Spin C-manifolds and complex contact structures,” Commun. Math. Phys., 193, 661–674 (1998).zbMATHMathSciNetGoogle Scholar
  153. 153.
    S. Nakayama, “On a classification of almost contact metric structures,” Tensor (N.S.), 9, No. 1, 1–7 (1968).Google Scholar
  154. 154.
    A. Nannicini, “Twistor methods in conformal almost symplectic geometry,” Rend. Inst. Mat. Univ. Trieste, 34, 215–234 (2002).zbMATHMathSciNetGoogle Scholar
  155. 155.
    A. P. Norden, Theory of Surfaces [in Russian], Moscow (1956).Google Scholar
  156. 156.
    K. Okumura, “Odd-dimensional Riemannian submanifolds admitting the almost contact metric structure in a Euclidean sphere,” Tsukuba J. Math., 34, 117–128 (2010).zbMATHMathSciNetGoogle Scholar
  157. 157.
    M. Okumura, “Some remarks on spaces with a certain contact structure,” Tôhoku Math. J., 14, 135–145 (1962).zbMATHMathSciNetGoogle Scholar
  158. 158.
    M. Okumura, “Certain almost contact hypersurfaces in Euclidean spaces,” Kodai Math. Semin. Repts., 16, 44–54 (1964).zbMATHMathSciNetGoogle Scholar
  159. 159.
    M. Okumura, “Certain almost contact hypersurfaces in Kählerian manifolds of constant holomorphic sectional curvature,” Tôhoku Math. J., 16, 270–284 (1964).zbMATHMathSciNetGoogle Scholar
  160. 160.
    M. Okumura, “Totally umbilical submanifolds of a Kählerian manifold,” J. Math. Soc. Jpn., 19, 317–327 (1967).zbMATHMathSciNetGoogle Scholar
  161. 161.
    Z. Olszak, “On contact metric manifolds,” Tôhoku Math. J., 31, 247–253 (1979).zbMATHMathSciNetGoogle Scholar
  162. 162.
    G. Pitis, Geometry of Kenmotsu Manifolds, Publ. House Transilvania Univ., Brasov (2007).zbMATHGoogle Scholar
  163. 163.
    M. M. Postnikov, Lectures in Geometry. Semester IV. Differential Geometry [in Russian], Nauka, Moscow (1988).Google Scholar
  164. 164.
    R. Prasad and M. M. Tripathi, “Transversal hypersurfaces of Kenmotsu manifold,” Indian J. Pure Appl. Math., 34, No. 3, 443–452 (2003).zbMATHMathSciNetGoogle Scholar
  165. 165.
    P. K. Rashevskii, Riemannian Geometry and Tensor Analysis [in Russian], Nauka, Moscow (1967).Google Scholar
  166. 166.
    S. Sasaki, Almost Contact Manifolds, Lect. Notes, 1 (1965); 2 (1967); 3 (1968).Google Scholar
  167. 167.
    S. Sasaki and Y. Hatakeyama, “On differentiable manifolds with certain structures which are closely related to almost contact structures, II,” Tôhoku Math. J., 13, No. 2, 281–294 (1961).zbMATHMathSciNetGoogle Scholar
  168. 168.
    S. Sasaki and Y. Hatakeyama, “On differentiable manifolds with contact metric structures,” J. Math. Soc. Jpn., 14, 249–271 (1962).zbMATHMathSciNetGoogle Scholar
  169. 169.
    S. Sawaki and K. Sekigawa, “Almost Hermitian manifolds with constant holomorphic sectional curvature,” J. Differ. Geom., 9, 123–134 (1974).zbMATHMathSciNetGoogle Scholar
  170. 170.
    A. A. Shaikh and S. K. Hui, “On extended generalized ϕ-recurrent β-Kenmotsu manifolds,” Publ. Inst. Math., 89 (103), 77–88 (2011).MathSciNetGoogle Scholar
  171. 171.
    R. Sharma, “Contact hypersurfaces of Kähler manifolds,” J. Geom., 78, 156–167 (2003).zbMATHMathSciNetGoogle Scholar
  172. 172.
    S. S. Shern, M. P. Do Carmo, and S. Kobayashi, “Minimal submanifolds of a sphere with second fundamental form of constant length,” in: Functional Analysis and Related Fields, Springer-Verlag, Berlin (1970), pp. 59–75.Google Scholar
  173. 173.
    S. S. Shukla and P. K. Rao, “On Ricci curvature of certain submanifolds in generalized complex space forms,” Tensor (N.S.), 72, 1–11 (2010).zbMATHMathSciNetGoogle Scholar
  174. 174.
    S. S. Shukla and M. K. Shukla, “On ϕ-Ricci symmetric Kenmotsu manifolds,” Novi Sad J. Math., 39, No. 2, 89–95 (2009).zbMATHMathSciNetGoogle Scholar
  175. 175.
    L. V. Stepanova, “A quasi-Sasakian structure on hypersurfaces of Hermitian manifolds,” in: Proc. Moscow Pedagogical Inst. [in Russian], Moscow (1995), pp. 187–191.Google Scholar
  176. 176.
    L. V. Stepanova and M. B. Banaru, “On hypersurfaces of quasi-Kählerian manifolds,” in: Differential Geometry of Manifolds of Figures [in Russian], 31, Kaliningrad State Univ., Kaliningrad (2000), pp. 85–88.Google Scholar
  177. 177.
    L. V. Stepanova and M. B. Banaru, “On quasi-Sasakian and cosymplectic hypersurfaces of special Hermitian manifolds,” Differential Geometry of Manifolds of Figures [in Russian], 32, Kaliningrad State Univ., Kaliningrad (2001), pp. 87–93.Google Scholar
  178. 178.
    L. Stepanova and M. Banaru, “On hypersurfaces of quasi-Kählerian manifolds,” An. Ştinţ. Univ. Al. I. Cuza, Iaşi, 47, No. 1, 165–170 (2001).zbMATHMathSciNetGoogle Scholar
  179. 179.
    L. Stepanova and M. Banaru, “Some remarks on almost contact metric structures on hypersurfaces of a QK-manifold,” in: Webs and Quasigroups [in Russian], Tver State Univ., Tver (2002), pp. 92–96.Google Scholar
  180. 180.
    R. Takagi, “On homogeneous real hypersurfaces in a complex projective space,” Osaka J. Math., 10, 495–506 (1973).zbMATHMathSciNetGoogle Scholar
  181. 181.
    R. Takagi, “Real hypersurfaces in a complex projective space with constant principal curvatures, I, II,” J. Math. Soc. Jpn., 27, 45–57, 507–516 (1975).zbMATHGoogle Scholar
  182. 182.
    R. Takagi, “A class of hypersurfaces with constant principal curvatures in a sphere,” J. Differ. Geom., 11, 225–233 (1976).zbMATHGoogle Scholar
  183. 183.
    R. Takagi, I.-B. Kim, and B. H. Kim, “The rigidity for real hypersurfaces in a complex projective space,” Tôhoku Math. J., 50, 531–536 (1998).zbMATHMathSciNetGoogle Scholar
  184. 184.
    T. Takahashi, “Sasakian ϕ-symmetric spaces,” Tôhoku Math. J., 29, 91–113 (1977).zbMATHGoogle Scholar
  185. 185.
    S. Tanno, “Sasakian manifolds with constant Φ-holomorphic sectional curvature,” Tˆohoku Math. J., 21, No. 3, 501–507 (1969).zbMATHMathSciNetGoogle Scholar
  186. 186.
    S. Tanno, “On the isometry groups of Sasakian manifolds,” J. Math. Soc. Jpn, 22, 579–590 (1970).zbMATHMathSciNetGoogle Scholar
  187. 187.
    S. Tanno, “Ricci curvature of contact Riemannian manifolds,” Tôhoku Math. J., 40, 441–448 (1988).zbMATHMathSciNetGoogle Scholar
  188. 188.
    Y. Tashiro, “On contact structures of hypersurfaces in almost complex manifolds, I,” Tôhoku Math. J., 15, No. 1, 62–78 (1963).zbMATHMathSciNetGoogle Scholar
  189. 189.
    Y. Tashiro, “On contact structures of tangent sphere bundles,” Tôhoku Math. J., 21, 117–143 (1969).zbMATHMathSciNetGoogle Scholar
  190. 190.
    M. M. Tripathi and S. S. Shukla, “Ricci curvature and k-Ricci curvature for submanifolds of generalized complex space forms,” Aligarh Bull. Math., 20, 143–156 (2001).zbMATHMathSciNetGoogle Scholar
  191. 191.
    Venkatesha and C. S. Bagewadi, “Some curvature tensors on a Kenmotsu manifold,” Tensor (N.S.), 68, 140–147 (2007).zbMATHMathSciNetGoogle Scholar
  192. 192.
    R. C. Voicu, “Ricci curvature properties and stability on 3-dimensional Kenmotsu manifolds,” Contemp. Math., 542, 273–278 (2011).MathSciNetGoogle Scholar
  193. 193.
    B. Wu, “1-type minimal surfaces in complex Grassmann manifolds and its Gauss map,” Tsukuba J. Math., 26, 49–60 (2002).zbMATHMathSciNetGoogle Scholar
  194. 194.
    K. Yano, Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, Oxford (1965).zbMATHGoogle Scholar
  195. 195.
    K. Yano and S. Ishihara, “Almost contact structures induced on hypersurfaces in complex and almost complex spaces,” Kodai Math. Sem. Rep., 17, No. 3, 222–249 (1965).zbMATHMathSciNetGoogle Scholar
  196. 196.
    K. Yano and M. Kon, Structures on Manifolds, World Scientific, Singapore (1984).zbMATHGoogle Scholar
  197. 197.
    Yoon Dae Won, “Inequality for Ricci curvature of certain submanifolds in locally conformal almost cosymplectic manifolds,” Int. J. Math. Math. Sci., 10, 1621–1632 (2005).Google Scholar
  198. 198.
    Xi Zhang, “Energy properness and Sasakian–Einstein metrics,” Commun. Math. Phys., 306, 229–260 (2011).zbMATHGoogle Scholar
  199. 199.
    Tongde Zhong, “The geometry of hypersurfaces in a Kähler manifold,” Acta Math. Sci., Ser. B, 21, 350–362 (2001).Google Scholar
  200. 200.
    Zhenrong Zhou, “Spectral geometry of Sasakian submanifolds,” J. Math. (P.R. China), 20, No. 1, 83–86 (2000).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Smolensk State UniversitySmolenskRussia
  2. 2.Moscow Pedagogical State UniversityMoscowRussia

Personalised recommendations