Journal of Mathematical Sciences

, Volume 205, Issue 3, pp 355–367 | Cite as

Index Sets of Almost Prime Constructive Models

  • S. S. GoncharovEmail author

We study complexity of index sets of strongly constructive almost prime models, almost prime constructive models, and almost prime with strong constructivizations Bibliography: 14 titles.


Computable Model Prime Model Algorithmic Complexity Constructive Model Graph Signature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. S. Goncharov and J. F. Knight, “Computable structure and non-structure theorems” [in Russian], Algebra Logika 41, No. 6, 639–681 (2002); English transl.: Algebra Logic 41, No. 6, 351–373 (2002).CrossRefMathSciNetGoogle Scholar
  2. 2.
    A. T. Nurtazin, “Computable Classes and Algebraic Autostability Criteria” [in Russian], Thesis, Alma-Ata (1974).Google Scholar
  3. 3.
    S. S. Goncharov and Yu. L. Ershov, Constructive Models [in Russian], Nauchnaya kniga (IDMI), Novosibirsk (1999); English transl.: Kluwer Academic/Plenum Press, New York (2002).Google Scholar
  4. 4.
    C. C. Chang and H. J. Keisler, Model Theory, North-Holland, Amsterdam etc. (1990).zbMATHGoogle Scholar
  5. 5.
    S. S. Goncharov, “Computability and computable models, mathematical problems from applied logic. II,” In: Logics for the XXIst Century, pp. 99–216, Springer, New York (2006).Google Scholar
  6. 6.
    E. B. Fokina, “Index sets of decidable models” [in Russian], Sib. Mat. Zh. 48, No. 5, 1167–1179 (2007); English transl.: Sib. Math. J. 48, No. 5, 939–948 (2007).CrossRefMathSciNetGoogle Scholar
  7. 7.
    H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York (1967).zbMATHGoogle Scholar
  8. 8.
    E. N. Pavlovskii, “Estimation of the algorithmic complexity of classes of computable models” [in Russian], Sib. Mat. Zh. 49, No. 3, 635–649 (2008); English transl.: Sib. Math. J. 49, No. 3, 512–523 (2008).CrossRefMathSciNetGoogle Scholar
  9. 9.
    E. N. Pavlovskii, “Index sets of simple models” [in Russian], Sib. Electr. Mat. Izv. 5, 200–210 (2008).MathSciNetGoogle Scholar
  10. 10.
    S. S. Goncharov, “Problem of the number of non-self-equivalent constructivizations” [in Russian], Algebra Logika 19, No. 6, 621–639 (1980); English transl.: Algebra Logic 19, No. 6, 401–414 (1980).CrossRefMathSciNetGoogle Scholar
  11. 11.
    A. T. Nurtazin, “Strong and weak constructivization and computable families” [in Russian], Algebra Logika 13, No. 3, 311–323 (1974); English transl.: Algebra Logic 13, No. 3, 177–184 (1974).CrossRefGoogle Scholar
  12. 12.
    Yu. L. Ershov and E. A. Palyutin, Matematical Logic [in Russian], Nauka, Moscow (1987).Google Scholar
  13. 13.
    S. S. Goncharov and A. T. Nurtazin, “Constructive models of complete solvable theories” [in Russian], Algebra Logika 12, No. 2, 125–142 (1973); English transl.: Algebra Logic 12, 67–77 (1974).CrossRefzbMATHGoogle Scholar
  14. 14.
    S. S. Goncharov and M. Purmakhdian, “Iterated extensions of models of countable theories and their applications” [in Russian], Algebra Logika 34, No. 6, 623–645 (1995); English transl.: Algebra Logic 34, No. 6, 346–358 (1995).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Sobolev Institute of Mathematics SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations