Journal of Mathematical Sciences

, Volume 204, Issue 6, pp 760–771 | Cite as

Topology on Polynumbers and Fractals

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, Berlin–Göttingen–Heidelberg (1961).CrossRefGoogle Scholar
  2. 2.
    N. Bourbaki, Elements of Mathematics: General Topology, Addison-Wesley (1966).Google Scholar
  3. 3.
    D. G. Pavlov and G. I. Garas’ko, “On the possibility of the realization of tringles in the threedimensional space with a scalar polyproduct,” Giperkompl. Chisla Geom. Fiz., 6, No. 1, 3–11 (2009).Google Scholar
  4. 4.
    V. A. Panchelyuga and S. E. Shnol’, “On the fractal structure of the space appearing in the study of the effect of local time,” Giperkompl. Chisla Geom. Fiz., 6, No. 1, 152–161 (2009).Google Scholar
  5. 5.
    A. Frölicher and W. Bucher, Calculus in Vector Spaces without Norms, Springer-Verlag, Berlin–Heidelberg–New York (1966).Google Scholar
  6. 6.
    R. R. Aidagulov and M. V. Shamolin, “Manifolds of continuous structures,” J. Math. Sci., 154, No. 4, 523–538 (2008).CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    T. Q. Binh, “Cartan type connections and connection sequences,” Publ. Math., 35, Nos. 3-4, 221–229 (1985).MathSciNetGoogle Scholar
  8. 8.
    A. Grey and L. M. Hervella, “The sixteen classes of almost Hermitian manifolds and their linear invariants,” Ann. Math. Pure Appl., 123, No. 4, 35–58 (1980).CrossRefGoogle Scholar
  9. 9.
    M. Hashiguchi, “On generalized Finsler spaces,” An. Sti. Univ. Iasi. Sec. 1a, 30, No. 1, 69–73 (1984).MATHMathSciNetGoogle Scholar
  10. 10.
    M. Hashiguchi, “Some topics on Finsler geometry,” Conf. Sem. Mat. Univ. Bari., 210 (1986)Google Scholar
  11. 11.
    S. Ikeda, “On the Finslerian metrical structures of the gravitational field,” An. Sti. Univ. Iasi. Sec. 1a, 30, No. 4, 35–38 (1984).MATHGoogle Scholar
  12. 12.
    S. Ikeda, “Theory of fields in Finsler spaces,” Sem. Mec. Univ. Timisoara, No. 8, 1–43 (1988).Google Scholar
  13. 13.
    S. Ikeda, “On the theory of gravitational field in Finsler spaces,” Tensor, 50, No. 3, 256–262 (1991).MATHMathSciNetGoogle Scholar
  14. 14.
    S. Kikuchi, “On metrical Finsler connections of generalized Finsler spaces,” in: Proc. 5th Nat. Sem. Finsler and Lagrange Spaces in Honour of 60th Birthday of Prof. Doct. Radu Miron, Brasov, February 10–15, 1988, Brasov (1989), pp. 197–206.Google Scholar
  15. 15.
    M. S. Knebelman, “Collineations and motions in generalized spaces,” Amer. J. Math., 51, 527–564 (1929).CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    M. Matsumoto, “On Einstein’s gravitational field equation in a tangent Riemannian space of a Finsler space,” Repts. Math. Phys., 8, No. 1, 103–108 (1975).CrossRefMATHGoogle Scholar
  17. 17.
    M. Matsumoto, Foundation of Finsler Geometry and Special Finsler Spaces, Kaiseisha Press (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of Mechanics of the M. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations