Journal of Mathematical Sciences

, Volume 203, Issue 4, pp 499–508 | Cite as

Transonic Gas Flow with Nonplanar Shock Waves

  • M. Yu. KazakovaEmail author

We study invariant solutions to the Karman–Guderley equation governing a threedimensional gas flow with shock waves on nonplanar surfaces. We investigate the global behavior of integral curves and use the obtained result for constructing a solution.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Cole and L. P. Cook, Transonic Aerodynamics, North-Holland, Amsterdam etc. (1986).Google Scholar
  2. 2.
    K. G. Guderley, Theory of Transonic Flows, Pergamon Press, Oxford etc. (1962).Google Scholar
  3. 3.
    E. G. Shifrin, Potenrial and Vortical Transonic Flows of an Ideal Gas [in Russian], Fizmatgiz, Moscow (2001).Google Scholar
  4. 4.
    E. O. Kuznetsova and I. A. Chernov, “Exact solutions of the transonic equations of gas dynamics” [in Russian], Izv. Sarat. Univ., Ser. Mat. 7, No. 1, 54–63 (2007).Google Scholar
  5. 5.
    S. V. Golovin, “Group stratification and exact solutions of the equation of transonic gas motion” [in Russian], Prikl. Mekh. Tekh. Fiz. 44, No. 3, 51–63 (2003); English transl.: J. Appl. Mech. Tech. Phys. 44, No. 3, 344–354 (2003).Google Scholar
  6. 6.
    L. V. Ovsyannikov, Lectures on the Fundamentals of Gas Dynamics [in Russian], Nauka, Moscow (1981).Google Scholar
  7. 7.
    V. M. Men’shikov “On extension of invariant solutions to equations of gas dynamics through a shock wave” [in Russian], Din. Splosh. Sredy No. 4, 163–169 (1970).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations