Journal of Mathematical Sciences

, Volume 203, Issue 4, pp 444–454 | Cite as

Δ20-Categoricity of Boolean Algebras


We show that the notions of Δ20-categoricity and relative Δ20-categoricity in Boolean algebras coincide. We prove that for every Turing degree d <0′ a computable Boolean algebra is d-computably categorical if and only if it is computably categorical. Bibliography: 21 titles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Fröhlich and J. Shepherdson, “Effective procedures in field theory,” Philos. Trans. Roy. Soc. London, Ser. A 248, No. 950, 407–432 (1956).CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    A. I. Mal’tsev, “Constructive algebras. I” [in Russian], Usp. Mat. Nauk 16, No. 3, 3–60 (1961); English transl.: Russ. Math. Surv. 16, No. 3, 77–129 (1961).CrossRefMATHGoogle Scholar
  3. 3.
    S. S. Goncharov and Yu. L. Ershov, Constructive Models [in Russian], Nauchnaya Kniga (IDMI), Novosibirsk (1999); English transl.: Consultants Bureau, New York (2000).Google Scholar
  4. 4.
    S. S. Goncharov, “Computability and computable models,” In: Mathematical Problems from Applied Logic II, pp. 99–216, Springer, New York (2006).Google Scholar
  5. 5.
    S. S. Goncharov and B. Khoussainov, “Open problems in the theory of constructive algebraic systems,” In: Computability Theory and its Applications, pp. 145–170, Am. Math. Soc., Providence, RI (2000).CrossRefGoogle Scholar
  6. 6.
    S. S. Goncharov, “On the number of nonequivalent constructivizations” [in Russian], Algebra Logika 16, No. 3, 257–282 (1977).CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    S. Goncharov, V. Harizanov, J. Knight, C. McCoy, R. Miller, and R. Solomon, “Enumerations in computable structure theory,” Ann. Pure Appl. Logic 136, No. 3, 219–246 (2005).CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    J. Chisholm, E. B. Fokina, S. S. Goncharov, V. S. Harizanov, J. F. Knight, and S. Quinn, “Intrinsic bounds on complexity and definability at limit levels,” J. Symb. Logic 74, No. 3, 1047–1060 (2009)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    S. S. Goncharov, “Autostability and computable families of constructivizations” [in Russian], Algebra Logika 14, No. 6, 647–680 (1975).CrossRefMATHGoogle Scholar
  10. 10.
    S. S. Goncharov and V. D. Dzgoev, “Autostability of models” [in Russian], Algebra Logika 19, No. 1, 45–58 (1980); English transl.: Algebra Logic 19, 28–37 (1980).CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    J. B. Remmel, “Recursive isomorphism types of recursive Boolean algebras,” J. Symb. Logic 46, No. 3, 572–594 (1981).CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Ch. McCoy, Δ20-Categoricity in Boolean algebras and linear orderings,” Ann. Pure Appl. Logic 119, No. 1–3, 85–120 (2003).Google Scholar
  13. 13.
    Ch. F. McCoy, “Partial results in Δ30-categoricity in linear orderings and Boolean algebras” [in Russian], Algebra Logika 41, No. 5, 531–552 (2002); English transl.: Algebra Logic 41, No. 5, 295–305 (2002).Google Scholar
  14. 14.
    C. J. Ash, “Categoricity in hyperarithmetical degrees,” Ann. Pure Appl. Logic 34, No. 1, 1–14 (1987).CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    N. A. Bazhenov, “Hyperarithmetical categoricity of Boolean algebras of type B(ω α × η)” [in Russian], Vest. Novosib. Gos. Univ. Ser. Mat. 12, No. 3, 35–45 (2012); English transl.: J. Math. Sci., New York 202, No. 1, 40–49 (2014).CrossRefMathSciNetGoogle Scholar
  16. 16.
    S. S. Goncharov, Countable Boolean Algebras and Decidability [in Russian], Nauchnaya Kniga (IDMI), Novosibirsk (1996); English transl.: Plenum, New York (1997).Google Scholar
  17. 17.
    R. I. Soare, Recursively Enumerable Sets and Degrees, Springer, Berlin etc. (1987).CrossRefGoogle Scholar
  18. 18.
    C. J. Ash and J. F. Khight, Computable Structures and the Hyperarithmetical Hierarchy, Elsevier, Amsterdam (2000).MATHGoogle Scholar
  19. 19.
    A. Montalbán, “On the triple jump of the set of atoms of a Boolean algebra,” Proc. Am. Math. Soc. 136, No. 7, 2589–2595 (2008).CrossRefMATHGoogle Scholar
  20. 20.
    C. E. Sacks, “Recursive enumerability and the jump operator,” Trans. Am. Math. Soc. 108, No. 2, 223–239 (1963).CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    S. S. Goncharov, “Some properties of the constructivizations of Boolean algelbras” [in Russian], Sib. Mat. Zh. 16, No. 2, 264–278 (1975); English transl.: Sib. Math. J. 16, No. 2, 203–214 (1975).CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Sobolev Institute of Mathematics SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations