Journal of Mathematical Sciences

, Volume 200, Issue 6, pp 742–768 | Cite as

The Yoga of Commutators: Further Applications

  • R. Hazrat
  • A. V. Stepanov
  • N. A. Vavilov
  • Z. Zhang
Article

In the present paper, we describe some recent applications of localization methods to the study of commutators in the groups of points of algebraic and algebraic-like groups, such as GL(n,R), Bak’s unitary groups GU(2n,R, Λ), and Chevalley groups G(Φ,R). In particular, we announce the multiple relative commutator formula and the general multiple relative commutator formula, as well as results on the bounded width of relative commutators in the elementary generators. We also state some of the intermediate results, as well as some corollaries of these results. At the end of the paper we attach an updated list of unsolved problems in the field.

Keywords

Normal Subgroup Relative Commutator Commutative Ring Unitary Group Elementary Generator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Abe, “Whitehead groups of Chevalley groups over polynomial rings,” Comm. Algebra, 11, No. 12, 1271–1308 (1983).MATHMathSciNetGoogle Scholar
  2. 2.
    E. Abe, “Chevalley groups over commutative rings,” in: Proceedings of the Conference on Radical Theory, Sendai (1988), pp. 1–23.Google Scholar
  3. 3.
    E. Abe, “Normal subgroups of Chevalley groups over commutative rings,” Contemp. Math, 83, 1–17 (1989).Google Scholar
  4. 4.
    M. Akhavan-Malayeri, “Writing certain commutators as products of cubes in free groups,” J. Pure Appl. Algebra, 177, No. 1, 1–4 (2003).MATHMathSciNetGoogle Scholar
  5. 5.
    M. Akhavan-Malayeri, “Writing commutators of commutators as products of cubes in groups,” Comm. Algebra, 37, 2142–2144 (2009).MATHMathSciNetGoogle Scholar
  6. 6.
    H. Apte, P. Chattopadhyay, and R. A. Rao, “A local-global theorem for extended ideals,” J. Ramanujan Math. Soc., 27, No. 1, 17–30 (2012).MathSciNetGoogle Scholar
  7. 7.
    H. Apte and A. Stepanov, “Local-global principle for congruence subgroups of Chevalley groups,” Central Europ. J. Math., 12, No. 6, 801–812 (2014).MATHMathSciNetGoogle Scholar
  8. 8.
    A. Bak, “Subgroups of the general linear group normalized by relative elementary groups,” Lect. Notes Math., 967, 1–22 (1982).MathSciNetGoogle Scholar
  9. 9.
    A. Bak, “Non-abelian K-theory: The nilpotent class of K1 and general stability,” K-Theory, 4, 363–397 (1991).MATHMathSciNetGoogle Scholar
  10. 10.
    A. Bak, R. Basu, and R. A. Rao, “Local-global principle for transvection groups,” Proc. Amer. Math. Soc., 138, No. 4, 1191–1204 (2010).MATHMathSciNetGoogle Scholar
  11. 11.
    A. Bak, R. Hazrat, and N. Vavilov, “Localization-complection strikes again: relative K1 is nilpotent by abelian,” J. Pure Appl. Algebra, 213, 1075–1085 (2009).MATHMathSciNetGoogle Scholar
  12. 12.
    A. Bak and A. Stepanov, “Dimension theory and nonstable K-theory for net groups,” Rend. Sem. Mat. Univ. Padova, 106, 207–253 (2001).MATHMathSciNetGoogle Scholar
  13. 13.
    A. Bak and N. Vavilov, “Normality for elementary subgroup functors,” Math. Proc. Cambridge Phil. Soc., 118, No. 1, 35–47 (1995).MATHMathSciNetGoogle Scholar
  14. 14.
    A. Bak and N. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups,” Algebra Colloq., 7, No. 2, 159–196 (2000).MATHMathSciNetGoogle Scholar
  15. 15.
    H. Bass, “K-theory and stable algebra,” Inst. Hautes Études Sci. Publ. Math., 22, 5–60 (1964).MATHMathSciNetGoogle Scholar
  16. 16.
    H. Bass, J. Milnor, and J.-P. Serre, “Solution of the congruence subgroup problem for SLn (n ≥ 3) and Sp2n (n ≥ 2),” Inst. Hautes Études Sci. Publ. Math., 33, 59–133 (1967).MATHMathSciNetGoogle Scholar
  17. 17.
    R. Basu, “Topics in classical algebraic K-theory,” Ph.D. Thesis, Tata Institute of Fundamental Research, Mumbai (2007).Google Scholar
  18. 18.
    R. Basu, “On general quadratic group,” preprint, 1–8 (2012).Google Scholar
  19. 19.
    R. Basu, “Local-global principle for quadratic and hermitian groups and the nilpotence of K1,” preprint, 1–18 (2012); preliminary version: arXiv:0911.5237v1.Google Scholar
  20. 20.
    R. Basu, R. A. Rao, and R. Khanna, “On Quillen’s local global principle,” Contemp. Math., 390, 17–30 (2005).MathSciNetGoogle Scholar
  21. 21.
    P. Chattopadhya and R. A. Rao, “Excision and elementary symplectic action,” preprint, 1–14 (2012).Google Scholar
  22. 22.
    D. L. Costa and G. E. Keller, “Radix redux: normal subgroups of symplectic groups,” J. reine angew. Math., 427, No. 1, 51–105 (1991).MathSciNetGoogle Scholar
  23. 23.
    D. L. Costa and G. E. Keller, “On the normal subgroups of G2(A),” Trans. Amer. Math. Soc., 351, No. 12, 5051–5088 (1999).MATHMathSciNetGoogle Scholar
  24. 24.
    R. K. Dennis and L. N. Vaserstein, “On a question of M. Newman on the number of commutators,” J. Algebra, 118, 150–161 (1988).MATHMathSciNetGoogle Scholar
  25. 25.
    R. K. Dennis and L. N. Vaserstein, “Commutators in linear groups,” K-Theory, 2, 761–767 (1989).MATHMathSciNetGoogle Scholar
  26. 26.
    E. Ellers and N. Gordeev, “On the conjectures of J. Thompson and O. Ore,” Trans. Amer. Math. Soc., 350, 3657–3671 (1998).MATHMathSciNetGoogle Scholar
  27. 27.
    S. C. Geller and C. A. Weibel, “K2 measures excision for K1,” Proc. Amer. Math. Soc., 80, No. 1, 1–9 (1980).MATHMathSciNetGoogle Scholar
  28. 28.
    S. C. Geller and C. A. Weibel, “K1(A,B, I),” J. reine angew. Math., 342, 12–34 (1983).MATHMathSciNetGoogle Scholar
  29. 29.
    S. C. Geller and C. A. Weibel, “Subroups of elementary and Steinberg groups of congruence level I 2,” J. Pure Appl. Algebra, 35, 123–132 (1985).MATHMathSciNetGoogle Scholar
  30. 30.
    S. C. Geller and C. A. Weibel, “K1(A,B, I). II,” K-Theory, 2, No. 6, 753–760 (1989).MATHMathSciNetGoogle Scholar
  31. 31.
    V. N. Gerasimov, “The group of units of the free product of rings,” Math. Sbornik, 134, 42–65 (1987).Google Scholar
  32. 32.
    R. M. Guralnick and G. Malle, “Products of conjugacy classes and fixed point spaces,” J. Amer. Math. Soc., 25, No. 1, 77–121 (2012).MATHMathSciNetGoogle Scholar
  33. 33.
    G. Habdank, “A classification of subgroups of Λ-quadratic groups normalized by relative elementary subgroups,” Dissertation, Universität Bielefeld (1987).Google Scholar
  34. 34.
    G. Habdank, “A classification of subgroups of Λ-quadratic groups normalized by relative elementary subgroups,” Adv. Math., 110, No. 2, 191–233 (1995).MATHMathSciNetGoogle Scholar
  35. 35.
    A. J. Hahn and O. T. O’Meara, The Classical Groups and K-Theory, Springer, Berlin etc. (1989).MATHGoogle Scholar
  36. 36.
    R. Hazrat, “Dimension theory and non-stable K1 of quadratic module,” K-theory, 27, 293–327 (2002).MATHMathSciNetGoogle Scholar
  37. 37.
    R. Hazrat, “On K-theory of classical-like groups,” Doktorarbeit, Universit¨at Bielefeld (2002).Google Scholar
  38. 38.
    R. Hazrat, V. Petrov, and N. Vavilov, “Relative subgroups in Chevalley groups,” J. K-Theory, 5, 603–618 (2010).MATHMathSciNetGoogle Scholar
  39. 39.
    R. Hazrat, A. Stepanov, N. Vavilov, and Z. Zhang, “The yoga of commutators,” J. Math. Sci., 179, No. 6, 662–678 (2011).MathSciNetGoogle Scholar
  40. 40.
    R. Hazrat, A. Stepanov, N. Vavilov, and Z. Zhang, “Commutators width in Chevalley groups,” Note di Matematica, 33, No. 1, 139–170 (2013).MATHMathSciNetGoogle Scholar
  41. 41.
    R. Hazrat, A. Stepanov, N. Vavilov, and Z. Zhang, “General multiple commutator formula,” to appear (2014).Google Scholar
  42. 42.
    R. Hazrat, A. Stepanov, N. Vavilov, and Z. Zhang, “On the length of commutators in unitary groups,” 1–28, to appear (2014).Google Scholar
  43. 43.
    R. Hazrat and N. Vavilov, “K1 of Chevalley groups are nilpotent,” J. Pure Appl. Algebra, 179, 99–116 (2003).MATHMathSciNetGoogle Scholar
  44. 44.
    R. Hazrat and N. Vavilov, “Bak’s work on K-theory of rings (with an appendix by Max Karoubi ),” J. K-Theory, 4, No. 1, 1–65 (2009).MATHMathSciNetGoogle Scholar
  45. 45.
    R. Hazrat, N. Vavilov, and Z. Zhang, “Relative commutator calculus in unitary groups, and applications,” J. Algebra, 343, 107–137 (2011).MATHMathSciNetGoogle Scholar
  46. 46.
    R. Hazrat, N. Vavilov, and Z. Zhang, “Relative commutator calculus in Chevalley groups, and applications,” J. Algebra, 385, 262–293 (2013).MATHMathSciNetGoogle Scholar
  47. 47.
    R. Hazrat, N. Vavilov, and Z. Zhang, “Multiple commutator formulas for unitary groups,” arXiv:1205.6866v1; submitted to J. K-Theory.Google Scholar
  48. 48.
    R. Hazrat, N. Vavilov, and Z. Zhang, “Generation of relative commutator subgroups in Chevalley groups,” arXiv:1212.5432v1; submitted to Edinbourgh Math. J. Google Scholar
  49. 49.
    R. Hazrat, N. Vavilov, and Z. Zhang, “The commutators of classical groups,” ICTP preprint (2012).Google Scholar
  50. 50.
    R. Hazrat and Z. Zhang, “Generalized commutator formula,” Comm. Algebra, 39, No. 4, 1441–1454 (2011).MATHMathSciNetGoogle Scholar
  51. 51.
    R. Hazrat and Z. Zhang, “Multiple commutator formula,” Israel J. Math., 195, No. 1, 481–505 (2013).MATHMathSciNetGoogle Scholar
  52. 52.
    D. A. Jackson, “Basic commutator in weights six and seven as relators,” Comm. Algebra, 36, 2905–2909 (2008).MATHMathSciNetGoogle Scholar
  53. 53.
    D. A. Jackson, A. M. Gaglione, and D. Spellman, “Basic commutators as relators,” J. Group Theory, 5, 351–363 (2001).MathSciNetGoogle Scholar
  54. 54.
    D. A. Jackson, A. M. Gaglione, and D. Spellman, “Weight five basic commutators as relators,” Contemp. Math., 511, 39–81 (2010).MathSciNetGoogle Scholar
  55. 55.
    W. van der Kallen, “Another presentation for Steinberg groups,” Indag. Math., 39, No. 4, 304–312 (1977).MathSciNetGoogle Scholar
  56. 56.
    W. van der Kallen, “SL3(ℂ[x]) does not have bounded word length,” Lect. Notes Math., 966, 357–361 (1982).Google Scholar
  57. 57.
    W. van der Kallen, “A module structure on certain orbit sets of unimodular rows,” J. Pure Appl. Algebra, 57, No. 3, 281–316 (1989).MATHMathSciNetGoogle Scholar
  58. 58.
    L.-C. Kappe and R. F. Morse, “On commutators in groups,” in: Groups St. Andrews 2005, Vol. II, Cambridge Univ. Press, Cambridge (2007), pp. 531–558.Google Scholar
  59. 59.
    M.-A. Knus, Quadratic and Hermitian Forms Over Rings, Springer-Verlag, Berlin etc. (1991).MATHGoogle Scholar
  60. 60.
    V. I. Kopeiko, “The stabilization of symplectic groups over a polynomial ring,” Math. U.S.S.R. Sb., 34, 655–669 (1978).MathSciNetGoogle Scholar
  61. 61.
    E. Kulikova and A. Stavrova, “Centralizer of the elementary subgroup of an isotropic reductive group,” Vestnik St. Petersburg Univ., Ser. Math., 46, No. 1, 22–28 (2013).MATHMathSciNetGoogle Scholar
  62. 62.
    N. Kumar and R. A. Rao, “Quillen–Suslin theory for a structure theorem for the elementary symplectic group,” arXiv:1203.2104v1 (2012).Google Scholar
  63. 63.
    T. Y. Lam, Serre’s Problem on Projective Modules, Springer-Verlag, Berlin etc. (2006).Google Scholar
  64. 64.
    M. Larsen and A. Shalev, “Word maps and Waring type problems,” J. Amer. Math. Soc., 22, 437–466 (2009).MATHMathSciNetGoogle Scholar
  65. 65.
    M. Larsen, A. Shalev, and P. H. Tiep, “The Waring problem for finite simple groups,” Ann. Math., 174, 1885–1950 (2011).MATHMathSciNetGoogle Scholar
  66. 66.
    F. Li, “The structure of symplectic group over arbitrary commutative rings,” Acta Math. Sinica, 3, No. 3, 247–255 (1987).MATHMathSciNetGoogle Scholar
  67. 67.
    F. Li, “The structure of orthogonal groups over arbitrary commutative rings,” Chinese Ann. Math. Ser. B, 10, No. 3, 341–350 (1989).MATHMathSciNetGoogle Scholar
  68. 68.
    F. Li and M. Liu, “Generalized sandwich theorem,” K-Theory, 1, 171–184 (1987).MATHMathSciNetGoogle Scholar
  69. 69.
    M. Liebeck, E. A. O’Brien, A. Shalev, and P. H. Tiep, “The Ore conjecture,” J. Europ. Math. Soc., 12, 939–1008 (2010).MATHMathSciNetGoogle Scholar
  70. 70.
    M. Liebeck, E. A. O’Brien, A. Shalev, and P. H. Tiep, “Commutators in finite quasisimple groups,” Bull. London Math. Soc., 43, 1079–1092 (2011).MATHMathSciNetGoogle Scholar
  71. 71.
    M. Liebeck, E. A. O’Brien, A. Shalev, and P. H. Tiep, “Products of squares in finite simple groups,” Proc. Amer. Math. Soc., 43, No. 6, 1079–1092 (2012).MathSciNetGoogle Scholar
  72. 72.
    A. Yu. Luzgarev, “Overgroups of E(F 4 ,R) in G(E 6 ,R),” St. Petesburg Math. J., 20, No. 5, 148–185 (2008).Google Scholar
  73. 73.
    A. Yu. Luzgarev and A. K. Stavrova, “Elementary subgroups of isotropic reductive groups are perfect,” St. Petersburg Math. J., 24, No. 5, 881–890 (2012).MathSciNetGoogle Scholar
  74. 74.
    A. W. Mason, “A note on subgroups of GL(n,A) which are generated by commutators,” J. London Math. Soc., 11, 509–512 (1974).Google Scholar
  75. 75.
    A. W. Mason, “On subgroups of GL(n,A) which are generated by commutators. II,” J. reine angew. Math., 322, 118–135 (1981).MATHMathSciNetGoogle Scholar
  76. 76.
    A. W. Mason, “A further note on subgroups of GL(n,A) which are generated by commutators,” Arch. Math., 37, No. 5, 401–405 (1981).MATHMathSciNetGoogle Scholar
  77. 77.
    A. W. Mason and W. W. Stothers, “On subgroups of GL(n,A) which are generated by commutators,” Invent. Math., 23, 327–346 (1974).MATHMathSciNetGoogle Scholar
  78. 78.
    H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés,” Ann. Sci. École Norm. Sup. (4), 2, 1–62 (1969).MATHGoogle Scholar
  79. 79.
    D. W. Morris, “Bounded generation of SL(n,A) (after D. Carter, G. Keller, and E. Paige),” New York J. Math., 13, 383–421 (2007).MATHMathSciNetGoogle Scholar
  80. 80.
    V. Petrov, “Overgroups of unitary groups,” K-Theory, 29, 147–174 (2003).MATHMathSciNetGoogle Scholar
  81. 81.
    V. A. Petrov, “Odd unitary groups,” J. Math. Sci., 130, No. 3, 4752–4766 (2003).Google Scholar
  82. 82.
    V. A. Petrov, “Overgroups of classical groups,” Ph. D. Thesis, St.Petersburg State University, St.Petersburg (2005).Google Scholar
  83. 83.
    V. A. Petrov and A. K. Stavrova, “Elementary subgroups of isotropic reductive groups,” St.Petersburg Math. J., 20, No. 3, 160–188 (2008).MathSciNetGoogle Scholar
  84. 84.
    R. A. Rao, “Talks given at ICTP in the Discussion meeting on Nonstable classical algebraic K-theory,” ICTP preprint (2012).Google Scholar
  85. 85.
    Sh. Rosset, “The higher lower central series,” Israel J. Math., 73, No. 3, 257–279 (1991).MATHMathSciNetGoogle Scholar
  86. 86.
    A. Sivatski and A. Stepanov, “On the word length of commutators in GLn(R),” K-theory, 17, 295–302 (1999).MATHMathSciNetGoogle Scholar
  87. 87.
    A. Shalev, “Commutators, words, conjugacy classes, and character methods,” Turk. J. Math., 31, 131–148 (2007).MATHMathSciNetGoogle Scholar
  88. 88.
    A. Shalev, “Word maps, conjugacy classes, and a noncommutative Waring-type theorem,” Ann. Math., 170, No. 3, 1383–1416 (2009).MATHMathSciNetGoogle Scholar
  89. 89.
    A. Smolensky, B. Sury, and N. Vavilov, “Gauss decomposition for Chevalley groups revisited,” Intern. J. Group Theory, 1, No. 1, 3–16 (2012).MATHMathSciNetGoogle Scholar
  90. 90.
    A. Stavrova, “Homotopy invariance of non-stable K1-functors,” to appear in J. K-theory; arXiv:1111.4664 (2012).Google Scholar
  91. 91.
    M. R. Stein, “Generators, relations and coverings of Chevalley groups over commutative rings,” Amer. J. Math., 93, No. 4, 965–1004 (1971).MATHMathSciNetGoogle Scholar
  92. 92.
    A. Stepanov, “Structure of Chevalley groups via universal localisation,” to appear in J. K-theory; arXiv:1303.6082 (2013).Google Scholar
  93. 93.
    A. Stepanov and N. Vavilov, “Decomposition of transvections: a theme with variations,” K-Theory, 19, 109–153 (2000).MATHMathSciNetGoogle Scholar
  94. 94.
    A. Stepanov and N. Vavilov, “On the length of commutators in Chevalley groups,” Israel J. Math., 185, 253–276 (2000).MathSciNetGoogle Scholar
  95. 95.
    A. Stepanov, N. Vavilov, and You Hong, “Overgroups of semi-simple subgroups: localisation approach,” preprint (2013).Google Scholar
  96. 96.
    A. A. Suslin, “The structure of the special linear group over polynomial rings,” Math. USSR Izv., 11, No. 2, 235–253 (1977).MathSciNetGoogle Scholar
  97. 97.
    A. A. Suslin and V. I. Kopeiko, “Quadratic modules and orthogonal groups over polynomial rings,” J. Sov. Math., 20, No. 6, 2665–2691 (1977).Google Scholar
  98. 98.
    K. Suzuki, “Normality of the elementary subgroups of twisted Chevalley groups over commutative rings,” J. Algebra, 175, No. 3, 526–536 (1995).MATHMathSciNetGoogle Scholar
  99. 99.
    R. G. Swan, “Excision in algebraic K-theory,” J. Pure Appl. Algebra, 1, No. 3, 221–252 (1971).MATHMathSciNetGoogle Scholar
  100. 100.
    G. Taddei, “Schémas de Chevalley–Demazure, fonctions représentatives et théorème de normalité,” Thèse, Université de Genève (1985).Google Scholar
  101. 101.
    G. Taddei, “Normalité des groupes élémentaire dans les groupes de Chevalley sur un anneau,” Contemp. Math., 55, No. 2, 693–710 (1986).MathSciNetGoogle Scholar
  102. 102.
    J. Tits, “Systèmes générateurs de groupes de congruences,” C. R. Acad. Sci. Paris, Sér A, 283, 693–695 (1976).MathSciNetGoogle Scholar
  103. 103.
    M. S. Tulenbaev, “The Steinberg group of a polynomial ring,” Math. U.S.S.R. Sb., 45, No. 1, 139–154 (1983).MATHMathSciNetGoogle Scholar
  104. 104.
    L. Vaserstein, “On the normal subgroups of the GLn of a ring,” Lect. Notes Math., 854, 454–465 (1981).MathSciNetGoogle Scholar
  105. 105.
    L. Vaserstein, “The subnormal structure of general linear groups,” Math. Proc. Cambridge Phil. Soc., 99, 425–431 (1986).MATHMathSciNetGoogle Scholar
  106. 106.
    L. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings,” Tôhoku Math. J., 36, No. 5, 219–230 (1986).MathSciNetGoogle Scholar
  107. 107.
    L. Vaserstein, “Normal subgroups of orthogonal groups over commutative rings,” Amer. J. Math., 110, No. 5, 955–973 (1988).MATHMathSciNetGoogle Scholar
  108. 108.
    L. Vaserstein, “Normal subgroups of symplectic groups over rings,” K-Theory, 2, No. 5, 647–673 (1989).MATHMathSciNetGoogle Scholar
  109. 109.
    L. Vaserstein, “The subnormal structure of general linear groups over rings,” Math. Proc. Cambridge Phil. Soc., 108, No. 2, 219–229 (1990).MATHMathSciNetGoogle Scholar
  110. 110.
    L. N. Vaserstein and A. A. Suslin, “Serre’s problem on projective modules over polynomial rings, and algebraic K-theory,” Math. USSR Izv., 10, 937–1001 (1978).MATHGoogle Scholar
  111. 111.
    L. Vaserstein and You Hong, “Normal subgroups of classical groups over rings,” J. Pure Appl. Algebra, 105, No. 1, 93–106 (1995).MATHMathSciNetGoogle Scholar
  112. 112.
    N. Vavilov, “A note on the subnormal structure of general linear groups,” Math. Proc. Cambridge Phil. Soc., 107, No. 2, 193–196 (1990).MATHMathSciNetGoogle Scholar
  113. 113.
    N. Vavilov, “Structure of Chevalley groups over commutative rings,” in: Proceeding of the Conference on Non-associative Algebras and Related Topics (Hiroshima 1990), World Sci. Publ., London etc. (1991), pp. 219–335.Google Scholar
  114. 114.
    N. Vavilov, “A third look at weight diagrams,” Rend. Sem. Mat. Univ. Padova, 204, No. 1, 201–250 (2000).MathSciNetGoogle Scholar
  115. 115.
    N. Vavilov, A. Luzgarev, and A. Stepanov, “Calculations in exceptional groups over rings,” J. Math. Sci., 373, 48–72 (2009).MathSciNetGoogle Scholar
  116. 116.
    N. A. Vavilov and V. A. Petrov, “Overgroups of Ep(n,R),” St. Petersburg J. Math., 15, No. 4, 515–543 (2004).MATHMathSciNetGoogle Scholar
  117. 117.
    N. A. Vavilov and E. B. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations,” Acta Appl. Math., 45, 73–115 (1996).MATHMathSciNetGoogle Scholar
  118. 118.
    N. A. Vavilov and A. V. Stepanov, “Standard commutator formula,” Vestnik St. Petersburg Univ., Ser 1, 41, No. 1, 5–8 (2008).MATHMathSciNetGoogle Scholar
  119. 119.
    N. A. Vavilov and A. V. Stepanov, “Overgroups of semi-simple groups,” Vestnik Samara State Univ., Ser. Nat. Sci., No. 3, 51–95 (2008).Google Scholar
  120. 120.
    N. A. Vavilov and A. V. Stepanov, “Standard commutator formulae, revisited,” Vestnik St. Petersburg State Univ., Ser. 1, 43, No. 1, 12–17 (2010).MATHMathSciNetGoogle Scholar
  121. 121.
    N. A. Vavilov and A. V. Stepanov, “Linear groups over general rings. I. Generalities,” J. Math. Sci., 188, No. 5, 490–550 (2013).MATHMathSciNetGoogle Scholar
  122. 122.
    N. A. Vavilov and Z. Zhang, “Subnormal subgroups of Chevalley groups. I. Cases E6 and E7,” preprint, 1–24 (2013).Google Scholar
  123. 123.
    T. Vorst, “Polynomial extensions and excision K1,” Math. Ann., 244, 193–204 (1979).MATHMathSciNetGoogle Scholar
  124. 124.
    M. Wendt, “A1-homotopy of Chevalley groups,” J. K-Theory, 5, No. 2, 245–287 (2010).MATHMathSciNetGoogle Scholar
  125. 125.
    M. Wendt, “On homotopy invariance for homology of rank two groups,” preprint, 1–16 (2012).Google Scholar
  126. 126.
    J. S. Wilson, “The normal and subnormal structure of general linear groups,” Proc. Cambridge Philos. Soc., 71, 163–177 (1972).MATHMathSciNetGoogle Scholar
  127. 127.
    H. You, “On the solution to a question of D. G. James,” J. Northeast Normal Univ., No. 2, 39–44 (1982).Google Scholar
  128. 128.
    H. You, “On subgroups of Chevalley groups which are generated by commutators,” J. Northeast Normal Univ., No. 2, 9–13 (1992).Google Scholar
  129. 129.
    H. You, “Subgroups of classical groups normalised by relative elementary groups,” J. Pure Appl. Algebra, 216, 1040–1051 (2012).MATHMathSciNetGoogle Scholar
  130. 130.
    Z. Zhang, “Lower K-theory of unitary groups,” Ph. D. Thesis, University of Belfast (2007).Google Scholar
  131. 131.
    Z. Zhang, “Stable sandwich classification theorem for classical-like groups,” Math. Proc. Cambridge Phil. Soc., 143, No. 3, 607–619 (2007).MATHGoogle Scholar
  132. 132.
    Z. Zhang, “Subnormal structure of non-stable unitary groups over rings,” J. Pure Appl. Algebra, 214, 622–628 (2010).MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • R. Hazrat
    • 1
  • A. V. Stepanov
    • 2
  • N. A. Vavilov
    • 3
  • Z. Zhang
    • 4
  1. 1.University of Western SydneySydneyAustralia
  2. 2.St. Petersburg Electrotechnical UniversitySt. Petersburg State UniversitySt. PetersburgRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia
  4. 4.Beijing Institute of TechnologyBeijingChina

Personalised recommendations