A Note on the Tangent Bundle and Gauss Functor of Posets and Manifolds
Article
First Online:
- 31 Downloads
We introduce a notion of the tangent bundle of a poset. In the case where the poset is the poset of simplices of a combinatorial manifold, the construction produces the best possible combinatorial model for the geometric compactified tangent bundle.
Keywords
■■■Preview
Unable to display preview. Download preview PDF.
References
- 1.A. Björner, “Posets, regular CW complexes and Bruhat order,” European J. Combin., 5, No. 1, 7–16 (1984).CrossRefMATHMathSciNetGoogle Scholar
- 2.A. Björner, “Topological methods,” in: Handbook of Combinatorics, Vol. 1, 2, Elsevier, Amsterdam (1995), pp. 1819–1872.Google Scholar
- 3.P. G. Goerss and J. F. Jardine, Simplicial Homotopy Theory, Birkhäuser Verlag, Basel (1999).CrossRefMATHGoogle Scholar
- 4.A. E. Hatcher, “Higher simple homotopy theory,” Ann. Math. (2), 102, 101–137 (1975).CrossRefMATHMathSciNetGoogle Scholar
- 5.J. F. P. Hudson, Piecewise Linear Topology, W. A. Benjamin, New York–Amsterdam (1969).Google Scholar
- 6.N. H. Kuiper and R. K. Lashof, “Microbundles and bundles. I. Elementary theory,” Invent. Math., 1, 1–17 (1966).CrossRefMATHMathSciNetGoogle Scholar
- 7.N. H. Kuiper and R. K. Lashof, “Microbundles and bundles. II. Semisimplical theory,” Invent. Math., 1, 243–259 (1966).CrossRefMATHMathSciNetGoogle Scholar
- 8.N. Levitt, Grassmannians and Gauss Maps in Piecewise-Linear Topology, Lect. Notes Math., 1366, Springer-Verlag, Berlin (1989).Google Scholar
- 9.R. MacPherson, “The combinatorial formula of Gabrielov, Gel’fand and Losik for the first Pontrjagin class,” in: Séminaire Bourbaki, 29e année (1976/77), Lect. Notes Math., 677, Springer, Berlin (1978), Exp. No. 497, pp. 105–124.Google Scholar
- 10.R. MacPherson, “Combinatorial differential manifolds,” in: Topological Methods in Modern Mathematics (Stony Brook, 1991), Publish or Perish, Houston (1993), pp. 203–221.Google Scholar
- 11.J. P. May, Classifying Spaces and Fibrations, Mem. Amer. Math. Soc., 155 (1975).Google Scholar
- 12.J Milnor, Microbundles and Differential Structures (mimeographed notes), Princeton University (1961).Google Scholar
- 13.N. Mnëv, “Combinatorial fiber bundles and fragmentation of PL fiberwise homeomorphism,” Zap. Nauchn. Semin. POMI, 344, 56–173 (2007); arXiv:0708.4039.Google Scholar
- 14.N. E. Mnëv and G. M. Ziegler, “Combinatorial models for the finite-dimensional Grassmannians,” Discrete Comput. Geom., 10, No. 3, 241–250 (1993).CrossRefMATHMathSciNetGoogle Scholar
- 15.M. Steinberger, “The classification of PL fibrations,” Michigan Math. J., 33, No. 1, 11–26 (1986).CrossRefMATHMathSciNetGoogle Scholar
- 16.J. H. C. Whitehead, “Simplicial spaces, nuclei and m-groups,” Proc. London Math. Soc., 45, 243–327 (1939).CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media New York 2014