Journal of Mathematical Sciences

, Volume 195, Issue 3, pp 311–335 | Cite as

Energy Minimization Problem in Two-Level Dissipative Quantum Control: Meridian Case

Article
  • 71 Downloads

Abstract

We analyze the energy-minimizing problem for a two-level dissipative quantum system described by the Kossakowsky–Lindblad equation. According to the Pontryagin maximum principle (PMP), minimizers can be selected among normal and abnormal extremals whose dynamics are classified according to the values of the dissipation parameters. Our aim is to improve our previous analysis from [5] concerning 2D solutions in the case where the Hamiltonian dynamics are integrable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York (1964).MATHGoogle Scholar
  2. 2.
    A. Agrachev, U. Boscain, and M. Sigalotti, “A Gauss–Bonnet-like formula on two-dimensional almost Riemannian manifolds,” Discr. Contin. Dynam. Syst. A, 20, 801–822 (2008).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    B. Bonnard and M. Chyba, “Singular trajectories and their role in control theory,” in: Math. Appl., 40, Springer-Verlag, Berlin (2003).Google Scholar
  4. 4.
    B. Bonnard and J.-B. Caillau, Singular Metrics on the Two-Sphere in Space Mechanics, HAL (2008).Google Scholar
  5. 5.
    B. Bonnard, O. Cots, N. Shcherbakova, and D. Sugny, “The energy minimization problem for two-level dissipative quantum systems,” J. Math. Phys., 51 (2010), DOI: 10.1063/1.3479390.MathSciNetGoogle Scholar
  6. 6.
    B. Bonnard, J.-B. Caillau, and O. Cots, “Energy minimization in two-level dissipative quantum control: the integrable case,” in: Proc. 8th AIMS Conf. on Dynamical Systems, Differential Equations and Applications, Dresden (2011), pp. 198–208.Google Scholar
  7. 7.
    U. Boscain and P. Mason, “Time minimal trajectories for a spin 1/2 particle in a magnetic field,” J. Math. Phys., 47, No. 6 (2006).Google Scholar
  8. 8.
    J. B. Caillau, O. Cots, and J. Gergaud, Hampath, apo.enseeiht.fr/hampath.Google Scholar
  9. 9.
    M. P. do Carmo, Riemannian Geometry, Birkhäuser, Boston (1992).CrossRefMATHGoogle Scholar
  10. 10.
    H. T. Davies, Introduction to Nonlinear Differential and Integral Equations, Dover Publications, New York (1962).Google Scholar
  11. 11.
    D. F. Lawden, Elliptic Functions and Applications, Springer-Verlag, New York (1989).CrossRefMATHGoogle Scholar
  12. 12.
    V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations, Princeton Univ. Press (1960).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institut de Mathématiques de Bourgogne and ENSEEIHT-IRIT INP ToulouseToulouseFrance

Personalised recommendations