Advertisement

Journal of Mathematical Sciences

, Volume 190, Issue 1, pp 1–7 | Cite as

Vladimir Alexandrovich Kondratiev. July 2, 1935–March 11, 2010

Article
  • 109 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Selected Papers of V. A. Kondratiev

  1. 1.
    V. A. Kondratiev, “Elementary derivation of necessary and sufficient conditions for nonoscillation of the solutions of a linear differential equation of second order,” Usp. Mat. Nauk, 12, No. 3, 159-160 (1957).Google Scholar
  2. 2.
    V. A. Kondrat’ev, “Sufficient conditions for non-oscillatory or oscillatory nature of solutions of 2nd order equation y″ + p(x)y = 0,” Dokl. Akad. Nauk SSSR, 113, 742–745 (1957).MathSciNetzbMATHGoogle Scholar
  3. 3.
    V. A. Kondrat’ev, “On the oscillation of solutions of linear differential equations of the third and fourth order,” Dokl. Akad. Nauk SSSR, 118, 22–24 (1958).MathSciNetzbMATHGoogle Scholar
  4. 4.
    V. A. Kondrat’ev, “The zeros of the solutions of equation y(n) + p(x)y = 0,” Dokl. Akad. Nauk SSSR, 120, 1180–1182 (1958).MathSciNetzbMATHGoogle Scholar
  5. 5.
    V. A. Kondratiev, “On the oscillation of solutions of linear differential equations of the third and fourth order,” Tr. Mosk. Mat. Obshch., 8, 259–281 (1959).Google Scholar
  6. 6.
    V. A. Kondratiev, “Extensions of linear differential operators,” Dokl. Akad. Nauk SSSR, 125, No. 3, 479–481 (1959).MathSciNetGoogle Scholar
  7. 7.
    V. A. Kondratiev, “Oscillatory properties of solution of the equation y″+p(x)y = 0,” Tr. Mosk. Mat. Obshch., 10, 419–436 (1961).Google Scholar
  8. 8.
    V. A. Kondratiev, “Bounds for the derivatives of solutions of elliptic equations near the boundary,” Dokl. Akad. Nauk SSSR, 146, No. 1, 22–25 (1962).MathSciNetGoogle Scholar
  9. 9.
    V. A. Kondratiev, “Boundary value problems for parabolic equations in closed regions,” Tr. Mosk. Mat. Obshch., 15, 400–451 (1966).Google Scholar
  10. 10.
    V. A. Kondratiev, “The solvability of the first boundary value problem for strongly elliptic equations,” Tr. Mosk. Mat. Obshch., 16, 293–318 (1967).Google Scholar
  11. 11.
    V. A. Kondratiev, “Boundary value problems for elliptic equaitons in domains with conical or angular points,” Tr. Mosk. Mat. Obshch., 16, 209–292 (1967).Google Scholar
  12. 12.
    Yu. V. Egorov and V. A. Kondratiev, “The oblique derivative problem,” Mat. Sb., 78, 148–176 (1969).MathSciNetGoogle Scholar
  13. 13.
    V. A. Kondratiev, “The smoothness of the solution of the Dirichlet problem for second-order elliptic equations in a piecewise smooth domain,” Differ. Uravn., 6, No. 10, 1831–1843 (1970).Google Scholar
  14. 14.
    V. A. Kondratiev, “On summability of positive solutions of differential equations of arbitrary order in a neigborhood of a characteristic manifold,” Mat. Sb., 99, No. 4, 582–593 (1976).MathSciNetGoogle Scholar
  15. 15.
    V. A. Kondratiev, “Singularities of the solution of the Dirichlet problem for a second-order elliptic equation in a neighborhood of an edge,” Differ. Uravn., 13, No. 11, 2026–2032 (1977).Google Scholar
  16. 16.
    V. A. Kondratiev, “Solutions of a hyperbolic Cauchy problem in the presence of characteristic points of the initial surface,” Tr. Sem. im. I. G. Petrovskogo, 5, 97–104 (1979).Google Scholar
  17. 17.
    O. A. Oleinik, V. A. Kondratiev, and I. Kopachek “On the asymptotic properties of solutions of biharmonic equations,” Differ. Uravn., 17, No. 10, 1886–1899 (1981).zbMATHGoogle Scholar
  18. 18.
    V. A. Kondratiev, I. Kopachek, and O. A. Oleinik, “The behavior of generalized solutions of second-order elliptic equations and systems of elasticity theory in a neighborhood of a boundary point,” Tr. Sem. im. I. G. Petrovskogo, 2, 135–152 (1982).Google Scholar
  19. 19.
    V. A. Kondratiev and O. A. Oleinik, “Estimates for solutions of the Dirichlet problem for the biharmonic equationn in a neighbourhood of an irregular boundary point and in a neighbourhood of infinity. Sent-Venant’s principle,” Proc. Roy. Soc. Edinburgh Sect. A., 93, Nos. 3–4, 327–343 (1982).MathSciNetGoogle Scholar
  20. 20.
    Yu. V. Egorov, V. A. Kondratiev, and O. A. Oleinik, “Sharp estimates in Hölder spaces for generalized solutions of biharmonic equaiton, the system of Navier–Stokes equations and the von Karman system in nonsmooth two-dimensional domains,” Vestn. Mos. Univ., Ser. I Mat Mekh., 6, 22–39 (1983).Google Scholar
  21. 21.
    V. A. Kondratiev and O. A. Oleinik, “Boundary value problems for partial differential equaitons in non smooth domains,” Usp. Mat. Nauk, 38, No. 2, 3–76 (1983).Google Scholar
  22. 22.
    Yu. V. Egorov and V. A. Kondratiev, “Estimation of smallest eigenvalue for an elliptic operator,” Differ. Uravn., 20, No. 8, 1397–1403 (1984).Google Scholar
  23. 23.
    V. A. Kondratiev and O. A. Oleinik, “Time-periodic solutions of a second-order parabolic equation in exterior domains,” Vestn. MGU, Mat.-Mech, 4, 38–47 (1985).Google Scholar
  24. 24.
    V. A. Kondratiev, I. Kopachek, and O. A. Oleinik, “Best Hölder exponents for generalized solutions of the Dirichlet problem for a second-order elliptic equaiton,” Mat. Sb., 131, No. 1, 113–125 (1986).Google Scholar
  25. 25.
    V. A. Kondratiev, “Estimates near the boundary for second-order derivatives of solutions of the Dirichlet problem for the biharmonic equation,” Atti Acad. Naz. Lincei Rend. Cl. Sci. Fiso. Mat. Natur. (8), 80, Nos. 7–12, 525–529 (1986).MathSciNetzbMATHGoogle Scholar
  26. 26.
    V. A. Kondratiev and O. A. Oleinik, Asymptotic properties of solutions of elasticity system, Application of multiple scaling in mechanics, Masson, Paris 188–205 (1987).Google Scholar
  27. 27.
    V. A. Kondratiev and O. A. Oleinik, “Asymptotic behavior in a neighborhood of infinity of solutions with a finite Dirichlet integral of second-order elliptic equations,” Tr. Sem. im. I. G. Petrovskogo, 12, 149–163 (1987).Google Scholar
  28. 28.
    Yu. V. Egorov and V. A. Kondratiev, “Estimates for the eigenfunctions of elliptic opeators with constant coefficients,” Tr. Sem. im. I. G. Petrovskogo, 12, 229–237 (1987).zbMATHGoogle Scholar
  29. 29.
    Yu. V. Egorov and V. A. Kondratiev,“On the estimation of the number of points of the negative spectrum of the Schrödinger operator,” Mat. Sb., 134, No. 4, 556–570 (1987).Google Scholar
  30. 30.
    V. A. Kondratiev and O. A. Oleinik, “On the behaviour at infinity of solutions of elliptic system with finite energy integral,” Arch. Ration. Mech. Anal., 99, No. 1, 75–89 (1987).MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    E. M. Landis and V. A. Kondratiev, “Qualitative theory of second-order linear partial differential equaitons,” Itogi Nauki i Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napr., 32, 99–215 (1988).zbMATHGoogle Scholar
  32. 32.
    V. A. Kondratiev and O. A. Oleinik, “Boundary value problems for a system in elastisity theory in unbounded domains. Korn inequalities,” Usp. Mat. Nauk, 43, No. 5, 55–98 (1988).zbMATHGoogle Scholar
  33. 33.
    E. M. Landis and V. A. Kondratiev, “On qualitative properties of solutions of a second-order nonlinear equaion,” Mat. Sb., 135, No. 3, 346–359 (1988).Google Scholar
  34. 34.
    V. A. Kondratiev and E. M. Landis, “Semilinear second-order equaitons with nonnegative characteristic form,” Math. Notes, 44, Nos. 3–4, 728–735 (1989).Google Scholar
  35. 35.
    V. A. Kozlov, V. A. Kondratiev, and V. G. Mazya, “On sign veriability and the absence of “strong” zeroes of solutions of elliptic equations,” Izv. Akad. Nauk SSSR., Ser. Mat., 53, No. 2, 328–344 (1989).Google Scholar
  36. 36.
    M. I. Vishik, Yu, S, Ilyashenko, A. S. Kalashnikov, V. A. Kondratiev, S. N. Kruzhkov, E. M. Landis, V. M. Millionschikov, O. A. Oleinik, A. F. Filippov, and M. A. Shubin, “Some unsolved problems in the theory of differential equaitons and mathematical physics,” Russ. Math. Surv., 44, No. 4, 157–171 (1989).zbMATHCrossRefGoogle Scholar
  37. 37.
    V. A. Kondratiev and E. M. Landis, “The qualitative theory of second-order partial differential equations,” Encycl. Math. Sci., 31, 99–215 (1989).Google Scholar
  38. 38.
    Yu. V. Egorov and V. A. Kondratiev, “On negative spectrum of an elliptic operator,” Mat. Sb., 181, No. 2, 147–166 (1990).Google Scholar
  39. 39.
    Yu. V. Egorov and V. A. Kondratiev, “The negative spectrum of an elliptic operator,” Tr. Mat. Inst. Steklov., 192, 61–67 (1990).zbMATHGoogle Scholar
  40. 40.
    V. A. Kondratiev and O. A. Oleinik, “Hardy’s and Korn’s type inequalities and their applications,” Rend. Mat. Appl. (7), 10, No. 3, 641–666 (1990).MathSciNetzbMATHGoogle Scholar
  41. 41.
    V. A. Kondratiev, I. Kopachek, and O. A. Oleinik, “On character of the continuity of a generalized solution of a Dirichlet problem for a biharmonic equation on the boundary of a nonsmooth domain,” Mat. Sb., 181, No. 4, 564–575 (1990).zbMATHGoogle Scholar
  42. 42.
    V. A. Kondratiev, “Schauder-type estimates of solutions of second-order elliptic systems in divergence form in non-regular domains,” Commun. Partial Differ. Equ., 16, No. 12, 1857–1878, (1991).CrossRefGoogle Scholar
  43. 43.
    V. A. Kondratiev and O. A. Oleinik, “A new approach to Bussinesq and Cherruti problems for a system in the theory of elastiity,” Vestn. MGU, Ser. 1, Mat.-Mekh., 1, 12–23 (1991).Google Scholar
  44. 44.
    V. A. Kondratiev, “On qualitative properties of solutions of semilinear ellip[tic equations,” Tr. Sem. im. I. G. Petrovskogo, 16, 186–190 (1992).zbMATHGoogle Scholar
  45. 45.
    V. A. Kondratiev and O. A. Oleinik, “On estimates for the eigenvalues in some elliptic problems,” Oper. Theory Adv. Appl., 57, 51–60 (1992).MathSciNetGoogle Scholar
  46. 46.
    V. A. Kondratiev and O. A. Oleinik, “Some results for nonlinear elliptic equations in cylindrical domains,” Oper. Theory Adv. Appl., 57, 185–195 (1992).MathSciNetGoogle Scholar
  47. 47.
    V. A. Kondratiev and O. A. Oleinik, “On asymptotic behaviour of solutions of some nonlinear elliptic equations in unbounded domains,” Pitman Res. Notes Math. Ser., 269, 169–196 (1992).MathSciNetGoogle Scholar
  48. 48.
    Yu. V. Egorov and V. A. Kondratiev,“ Estimates of the negative spectrum of an elliptic operator,” Am. Math. Soc. Transl. Ser. 2, 150, 111–140 (1992).Google Scholar
  49. 49.
    V. A. Kondratiev and O. A. Oleinik, “Boundary value problems for nonlinear elliptic equations in cylindrical domains,” J. Partial Different. Equ., 6, No. 1, 10 –16 (1993).MathSciNetzbMATHGoogle Scholar
  50. 50.
    V. A. Kondratiev, “Invertibility of Schrödinger operators in weighted spaces,” Russ. J. Math. Phys., 1, No. 4, 465–482 (1993).MathSciNetGoogle Scholar
  51. 51.
    V. A. Kondratiev, “Solutions of weakly nonlinear elliptic equations in a neighborhood of a conic point of the boundary,” Differ. Equ., 29, No. 2, 246–252 (1993).Google Scholar
  52. 52.
    V. A. Kondratiev and O. A. Oleinik, “On behaviour of solutions a class of nonlinear elliptic second-order equations in a neighborhood of a conic point of the boundary,” Lect. Not. Pure Appl. Math., 167, 151–161 (1995).Google Scholar
  53. 53.
    Yu. V. Egorov and V. A. Kondratiev, “On moments of negative eigenvalues of an elliptic operator,” Math. Nachr., 174, 73–79 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    V. A. Kondratiev and O. A. Oleinik, “On asymptotics of solutions of nonlinear second-order elliptic equations in cylindrical domains,” Prog. Nonlin. Differ. Equ. Appl., 22, 160–173 (1996).MathSciNetGoogle Scholar
  55. 55.
    Yu. V. Egorov and V. A. Kondratiev, “On estimates for the first eigenvalue in some Sturm–Liouville problems,” Russ. Math. Surv., 51, No. 3, 439–508 (1996).zbMATHCrossRefGoogle Scholar
  56. 56.
    Yu. V. Egorov and V. A. Kondratiev, “On spectral theory of elliptic operators” Oper. Theory Adv. App., 89, 1–325 (1996).MathSciNetGoogle Scholar
  57. 57.
    V. A. Kondratiev, “On solutions of nonlinear elliptic equaitons in cylindrical domains,” Fundam. Prikl. Mat., 2, No. 3, 863–874 (1996).MathSciNetGoogle Scholar
  58. 58.
    V. A. Kondratiev, “On some nonlinear boundary value problems in cylindrical domains,” Tr. Sem. im. I. G. Petrovskogo, 19, 235–261 (1996).Google Scholar
  59. 59.
    V. A. Kondratiev and F. Nicolosi, “On some properties of the solutions of quasilinear degenerate elliptic equations,” Math. Nachr., 182, 243–260 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Yu. V. Egorov and V. A. Kondratiev, “On blow-up solutions for parabolic equations of second order,” Math. Res., 100, 77–84 (1997).MathSciNetGoogle Scholar
  61. 61.
    V. A. Kondratiev and L. Veron, “Asymptotic behaviour of solutions of some nonlinear parabolic or elliptic equations,” Asymptot. Anal., 14, 117–156 (1997).MathSciNetzbMATHGoogle Scholar
  62. 62.
    Yu. V. Egorov and V. A .Kondratiev, “On a problem of O. A. Oleinik,” Russ, Math. Surv., 6, 1296–1297 (1997).CrossRefGoogle Scholar
  63. 63.
    V. A. Kondratiev, “On the asymptotic properties of solution of the nonlinear heat equaiton,” Differ. Equ., 34, No. 2, 250–259 (1998).zbMATHGoogle Scholar
  64. 64.
    Yu. V. Egorov, V. A. Kondratiev, and O. A. Oleinik, “Asymptotic behavior of solutions of nonlinear elliptic and parabolic systems in cylinderical domains,” Mat. Sb., 189, No. 3, 45–68 (1998).MathSciNetCrossRefGoogle Scholar
  65. 65.
    Yu. V. Egorov and V. A. Kondratiev, “On estimates of the first eigenvalue in some elliptic problems,” Oper. Theory Adv. Appl., 102, 73–84 (1998).MathSciNetGoogle Scholar
  66. 66.
    Yu. V. Egorov and V. A. Kondratiev, “Two theorems on blow-up solutions for semilincar parabolic equations of second order,” C. R. Acad. Sci. Paris, Ser. I Math., 327, No. 1, 47–52 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    V. A. Kondratiev, “Completeness of root functions of elliptical operators in Banach Spaces,” Russ. J. Math. Phys., 6, No. 2, 194–201 (1999).MathSciNetGoogle Scholar
  68. 68.
    V. A. Kondratiev, “On properties of solutions to nonlinear parabolic equations of the second order,” J. Dyn. Control Syst., 5, 523–546 (1999).CrossRefGoogle Scholar
  69. 69.
    Yu. V. Egorov and V. A. Kondratiev, “On asymptotic behavior in an infinite cylinder of solutions to an elliptic equation of second order,” Appl. Anal., 71, Nos. 1–4, 25–39 (1999).MathSciNetzbMATHGoogle Scholar
  70. 70.
    Yu. V. Egorov and V. A. Kondratiev, “On some global existence theorem for a semilinear parabolic problem,” Applied Nonlinear Analysis, Kluwer, N.Y. 67–78 (1999).Google Scholar
  71. 71.
    V. A. Kondratiev and M. A. Shubin, “Discreteness of the spectrum for Schrödinger operators on a manifold of bounded geometry,” Oper. Theory Adv. Appl., 110 185–226 (1999).Google Scholar
  72. 72.
    V. A. Kondratiev amd M. A. Shubin, “Conditions of the discreteness of the spectrum for Schrödinger operators on a manifolds,” Funct. Anal. Appl., 33, No. 3, 231–232 (1999).MathSciNetCrossRefGoogle Scholar
  73. 73.
    Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev, and S. I. Pohozaev, “On the necessary conditions of global existence to a quasilinear inequality in the half-space,” C. R. Acad. Sci. Paris, Ser. I Math., 330, No. 9, 93–98 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Yu. V. Egorov and V. A. Kondratiev, “On global solutions to a semilinear elliptic boundary problem in an unbounded domain,” Rend. Instit. Mat. Univ. Trieste, 31, No. 2, 87–102 (2000).MathSciNetzbMATHGoogle Scholar
  75. 75.
    Yu. V. Egorov and V. A. Kondratiev, “On the behavior of solutions of a nonlinear boundary value problem for a second-order elliptic equaition in an unbounded domain,” Trans. Mosc. Math. Soc., 62, 125–147 (2001).Google Scholar
  76. 76.
    Yu. V. Egorov and V. A. Kondratiev, “On the asymptotic behaviour of solutions to a semilinear elliptic boundary problem,” Funct. Differ. Equ., 8, Nos. 1–2, 163–181 (2001).MathSciNetzbMATHGoogle Scholar
  77. 77.
    V. A. Kondratiev and M. A. Shubin, “Discreteness of spectrum for the magnetic Schrodinger operators,” Commun. Partial Differ. Equ., 27, Nos. 3–4, 477–525 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev, and S. I. Pohozaev, “On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range,” C. R. Math. Acad. Sci. Paris, 335, No. 10, 805–810 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    I. Astashova, A. Filinovskii, V. Kondratiev, and L. Muravey, “Some problems in the qualitative theory of differential equations,” J. Nat. Geom., 23, 1–126 (2003).Google Scholar
  80. 80.
    V. A. Kondratiev, V. Liskevich, and Z. Sobol, “Second-order semilinear elliptic inequalities in exterior domains,” J. Differ. Equ., 187, 429–455 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    V. A. Kondratiev, “On the existence of positive solutions of second-order semilinear elliptic equations in cylindrical domains,” Russ. J. Math. Phys., 10, No. 1, 11–20 (2003).MathSciNetGoogle Scholar
  82. 82.
    V. A. Kondratiev, “On the existence of positive solutions of second-order semilinear elliptic equations in unbounded domains,” Funct. Differ. Equ., 10, Nos. 1–2, 283–290 (2003).MathSciNetzbMATHGoogle Scholar
  83. 83.
    V. Liskevich, V. A. Kondratiev, Z. Sobol, and O. Us, “Estimates of heat Kernels for a class of second-order elliptic operators with applications to semi-linear inequalities in exterior domains,” J. London Math. Soc. (2), 2, No. 69, 107–127 (2004).MathSciNetGoogle Scholar
  84. 84.
    Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev, and S. I. Pohozaev, “Global solutions of higher order parabolic semilinear equations,” Adv. Differ. Equ., 9, Nos. 9–10, 1009–1038 (2004).MathSciNetzbMATHGoogle Scholar
  85. 85.
    V. A. Kondratiev, V. G. Mazya, and M. A. Shubin, “Discreteness and strictly positivity criteria for magnetic Schrödinger Operators,” Commun. Partial Differ. Equ., 29, Nos. 3–4, 39–52 (2004).MathSciNetGoogle Scholar
  86. 86.
    V. A. Kondratiev, V. Liskevich, and V. Moroz, “Positive solutions to superlinear second-order divergence tipe elliptic equations in cone-like domains,” Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 25–43 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    V. A. Kondratiev, “On positive solutions of weakly nonlinear second-order elliptic equations in cylindrical domains,” Proc. Steklov Inst. Math., No. 3 (250), 169–177 (2005).Google Scholar
  88. 88.
    V. A. Kondratiev, V. Liskevich, V. Moroz, and Z. Sobol, “A critical phenomenon for sublinear elliptic equations in cone-like domains,” Bull. London Math. Soc., 37, 585–591 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    M. Borsuk and V. Kondratiev, Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains, Elsevier Science B. V., Amsterdam (2006).Google Scholar
  90. 90.
    V. A. Kondratiev, “On the asymptotic behavior of weakly nonlinear second-order elliptic equations in a cylindrical domain,” J. Math. Sci., 142, No. 3, 2122–2129 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    V. A. Kondratiev, “On the asymptotic properties of solutions of nonlinear parabolic equations,” J. Math. Sci., 142, No. 3, 2130–2137 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    V. A. Kondratiev, “On the asymptotic behavior of weakly nonlinear second-order elliptic equations in a cylindrical domain,” J. Math. Sci., 142, No. 3, 2122–2129 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    V. A. Kondratiev, “On the asymptotic behavior of solutions of second-order nonlinear elliptic and parabolic equations,” Ukr. Math. Bull., 5, No. 1, 101–116 (2008).MathSciNetGoogle Scholar
  94. 94.
    V. A. Kondratiev, V. A. Liskevich, and Z. Sobol, “Positive solutions to semi-linear and quasilinear elliptic equations on unbounded domains,” Handb. Differ. Equ., 6, 177–267 (2008).MathSciNetGoogle Scholar
  95. 95.
    V. A. Kondratiev, “Positive super-solutions to semi-linear second-order non-divergence type elliptic equations in exterior domains,” Trans. Am. Math. Soc., 361, No. 2, 697–713 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    V. A. Kondratiev, “The asymptotics of solutions to elliptic equations with nonlinear boundary conditions,” J. Math. Sci., 164, No. 6, 896–905 (2010).MathSciNetCrossRefGoogle Scholar
  97. 97.
    V. A. Kondratiev, “On positive solutions of the heat equation satisfying a nonlinear boundary condition,” Differ. Equ., 46, No. 8, 1114–1122 (2010).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Personalised recommendations